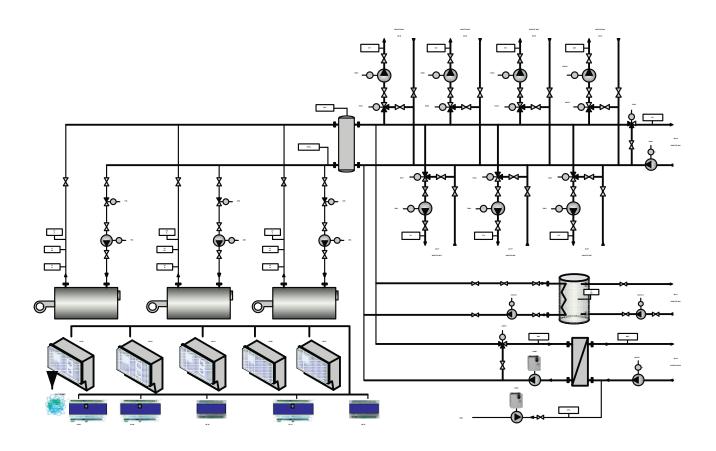
DHTPOPOC

ЭНТРОМАТИК

DHTPOPOC

Содержание	
Глава 1 Предисловие Комплекс Энтроматик 50 Примеры тепловых решений Энтроматик 50.01(02,03) Внешний вид Энтроматик 50.05(07) Внешний вид Технические данные Энтроматик 50.n Габаритные размеры Схема расположения на плате Техническое обслуживание	
Глава 2 Ввод в эксплуатацию Модуль ручного управления Структура безопасности Интерфейс Настройка котла Настройка контуров управления модуля 50.01 Настройка контуров управления модуля 50.02, 50.03 Мониторинг Стратегическое управление Раздел общих данных Раздел Дополнительных данных Тест реле (аналоговые входы) Настройка ModBuas RTU Порты ввода/вывода Аварийные ситуации Формирование уставки Заводские уставки Примеры настройки системы Комплексная (предпусковая) проверка системы автоматики Нештатные ситуации контура	42 43 45 46 48 48 51 51 54 58 66 67 70 70 71 71 72 72 73 74 75 77 79
Глава 3 Интерфейс Принципы управления Настройка контура общего назначения 1-3 Настройка контура 4 Дополнительные функции Система регулирования температуры Мониторинг Тест Заводские уставки	
Глава 4 Диспетчеризация Консоль Настройка модулей диспетчеризации Настройка СП сети Настройка связи с Меркурий 230 Схемы подключения Модули расширения Адресация ModBus Адресация Konar-Bus	
(SUBSTITUTE CANNEL CANNEL LIE LINOEKTRINOBSHING)	140


МОДУЛЬНАЯ СИСТЕМА ПО УПРАВЛЕНИЮ КОТЕЛЬНОЙ УСТАНОВКОЙ СЕРИИ 50

Введение

ГЛАВА 1

Рассмотренные вопросы:

- Общие Данные
- Состав и назначения системы
- Технические данные

Предисловие

Важные общие указания по применению

следует использовать Установку только в соответствии с ее назначением и при соблюдении руководства по эксплуатации. Техническое обслуживание и ремонт должны производиться только уполномоченным для этого квалифицированным персоналом. Установка должна эксплуатироваться только с теми комплектующими и запасными частями, которые рекомендованы в этом руководстве по эксплуатации. Другие комплектующие и детали, подверженные износу, могут быть использованы только тогда, когда их назначение четко оговорено для этого использования и они не влияют на рабочие характеристики и не нарушают требования по безопасной эксплуатации.

Мы оставляем за собой право на технические изменения!

Вследствие постоянного технического совершенствования оборудования возможны незначительные изменения в визуализации, функциональных решениях и технических параметрах.

Возможные источники опасности и указания по безопасной работе

Внимательно прочитайте данное руководство перед пуском в эксплуатацию. Все работы, требующие открывания устройства регулирования, должны производиться только специализированным, обученным персоналом. Перед открыванием устройства регулирования установка должна быть

отключена от сети электропитания с помощью аварийного выключателя или устройства защиты отопительной системы.

Предупреждение о недопустимости неправильной эксплуатации установки!

Разрешается вводить и изменять только эксплуатационные параметры, указанные в данном руководстве. Ввод других параметров приводит к изменению программ управления отопительной установки, что может стать причиной неправильного функционирования установки.

Осторожно!

Защита от замерзания активна только при включенном устройстве регулирования. При выключенном устройстве регулирования выпустите воду из котла, накопительного бойлера и котельных труб отопительной установки! Только после того, как вся система будет сухой, опасность замерзания исключается.

Все неисправности отопительной установки должны быть незамедлительно устранены специализированной фирмой.

ВНИМАНИЕ!!!

Неправильное подключение хотя бы одного датчика температуры, может повлиять на работу всей системы, поскольку аналоговые входы контроллера взаимосвязаны между собой общей сигнальной «землей».

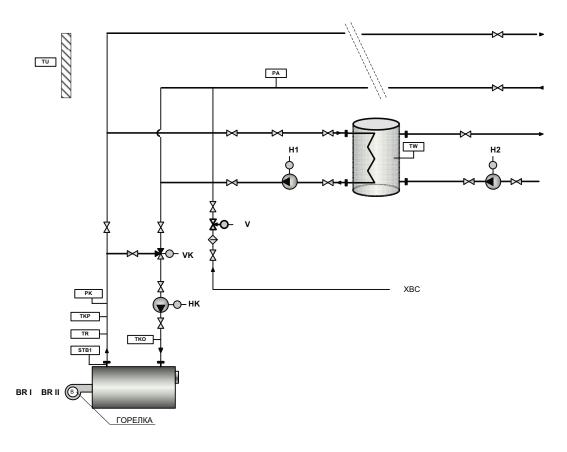
Комплекс котельной автоматики ЭНТРОМАТИК 50

Энтроматик 50 представляет из себя гибкую систему управления одно- трех котельной установкой состоящая из условно независимых модулей решающих определенные задачи управления. Модули системы могут работать как в общем комплексе так и по раздельности чем достигается высокая эффективность всей системы.

Модуль 50.01

Функции управления и регулирования

- управление горелкой (модулируемой/ ступенчатой)
- управление каскадом до 3х котлов (модули 50.02, 50.03)
- управление контуром ГВС (схема с бойлером)
- управление котлом по температурной кривой


- возможность работы в ручном режиме как при ступенчатом управлении так и при модуляции
- подпитка
- возможность расширения (модуль 50.04)

Функции защиты

- Терморегулятор(TR)
- Датчик температуры котла
- Датчик минимального давления котла
- Блокировка по внешний помехе

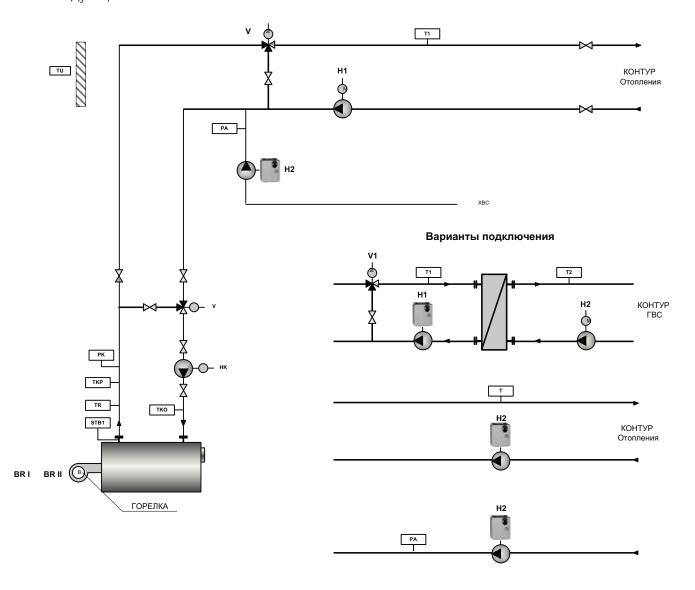
Дополнительные функции

- 3-и схемы защиты по холодной обратки
 - a) по обратке на каждом котле (защита своим исполнительным органом)
 - б) по общему датчику обратки (защита исполнительным органом контура отопления)
 - в) по минимальной температуре датчиков обратки каждого котла (защита исполнительным органом контура отопления)

ЭНТРОРОС

Модуль 50.02,50.03

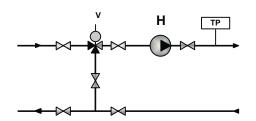
Функции управления и регулирования


- управление горелкой (модулируемой / ступенчатой)
- управление контуром Отопления (уставка / температурная кривая)
- управление исполнительным механизмом по сигналу 4-20mA (частотный регулятор.., и т.д.)
- управление котлом по температурной кривой
- возможность работы в ручном режиме как при ступенчатом управлении так и при модуляции

Функции защиты

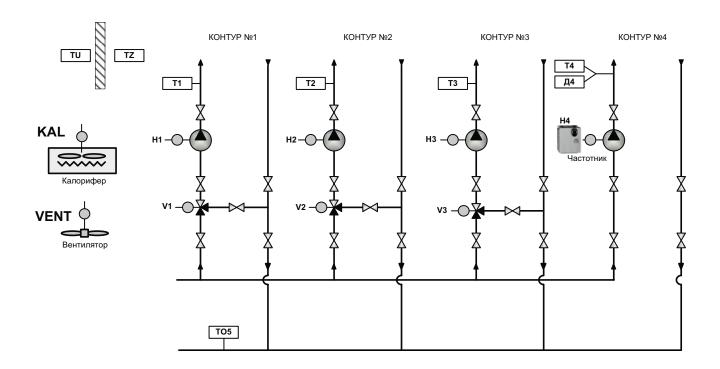
- Терморегулятор(TR)
- Датчик температуры котла
- Датчик минимального давления котла
- Блокировка по внешний помехе

Дополнительные функции


• защита котла по холодной обратки (ИО котла / ИО контура отопления)

Модуль 50.04 (расширение для 50.01)

Функции регулирования


• управление контуром отопления (в составе Исполнительный орган VK,насос P, датчик T)

Модуль 50.05,50.07

Функции регулирования

- Управление 3-я контурами (в составе Исполнительный орган VK, насос Р, датчик Т)
- Управление исполнительным механизмом управляющим сигналом 4-20мА (частотный регулятор, 3х 2х ходовой клапан, повысительный насос и тд.)
- управление температурой в помещении (вентилятор, калорифер)
- Возможность работы отопительных контуров по отопительной кривой
- Функция защиты подводящей линии от холодной обратной воды исполнительными механизмами контуров.

Модуль 50.09-50.12 (Диспетчеризация)

Модули являются расширением аналоговых и дискретных входов и выходов предназначенные для сбора информации, а также удаленного управления установкой.

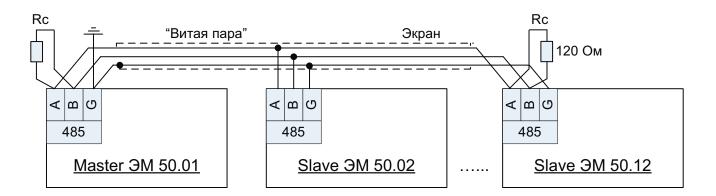
Передача данных предусматривается через сетевой модуль установленный в модуле 50.01 по протоколу TCP/IP

Для нормальной работы блоки расширения необходимо объединить в единую сеть RS485 с мастер контроллером (51.01)

Сетевой интерфейс ЭНТРОМАТИК 50

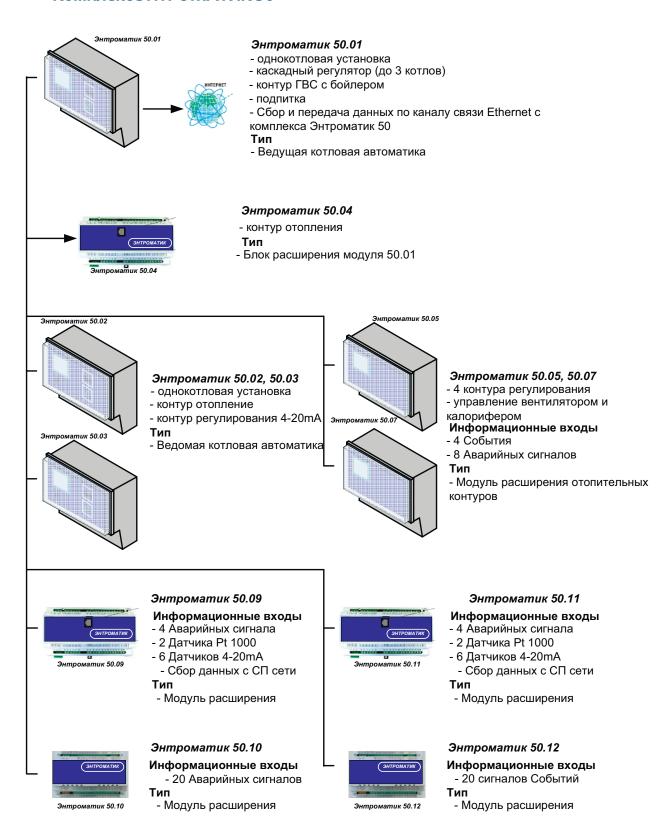
Обмен данными между модулями происходит по протоколу Kontar-Bus со структурой сети Master-Slave. В сети Энтроматик 50 ведущем модулем является модуль 50.01. Для организации сети необходимо все модули увязать между собой по цифровой внутренней шине через порт RS 485.

ВНИМАНИЕ!!!


Порт RS485 установленный на каждом модуле автоматики серии 50 используется только для организации внутренней сети по протоколу Kontar-Bus

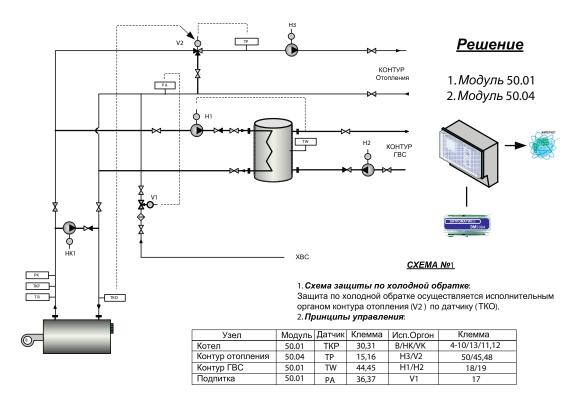
Интерфейсный канал RS485

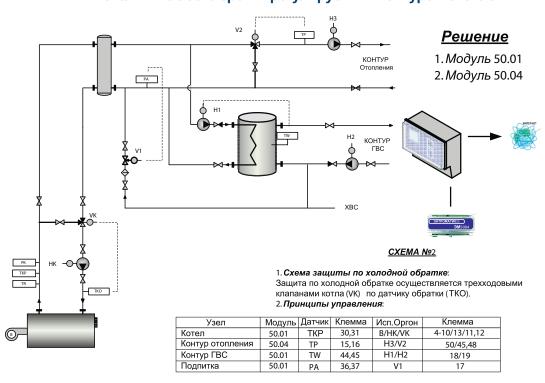
Соединение по интерфейсу RS485 осуществляется через клеммы A, B и G и выполняется экранированным кабелем типа "витая пара" с дренажным проводником (например КИПвЭВ, КИПвЭП, Belden 3105A 3109A).


Провода "витой пары" соединяют между собой одноименные клеммы "А" и "В" всех приборов,

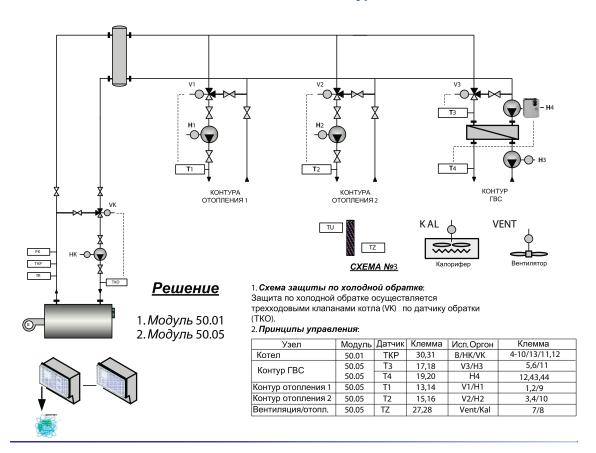
входящих в сеть. Дренажный провод также соединяет между собой все клеммы "G", причем в месте подключения к первому прибору в сети (к Master контроллеру), его соединяют с экраном и заземляют. Емкость кабеля для поддержания скорости передачи информации 57600Бод не должнапревышать 500пФ. Клеммы А, В наиболее удаленных контроллеров в сети необходимо зашунтировать резисторами сопротивлением 120 Ом, максимальное расстояние рекомендуется — не более 600 метров.

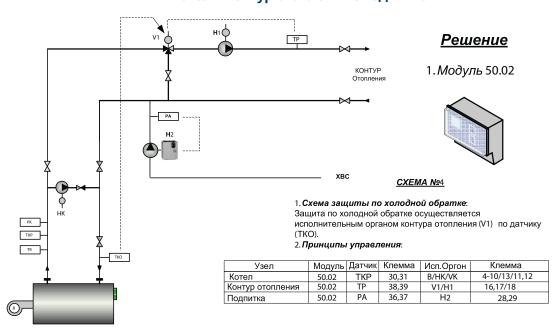
При проектировании сети на основе RS 485 необходимо выполнять требования и правила изложенные в спецификации на данный тип связи(официальное название TIA/EIA-485-A). Неправильная разводка сети может привести к значительному снижению скорости обмена между приборами.


Комплекс ЭНТРОМАТИК 50

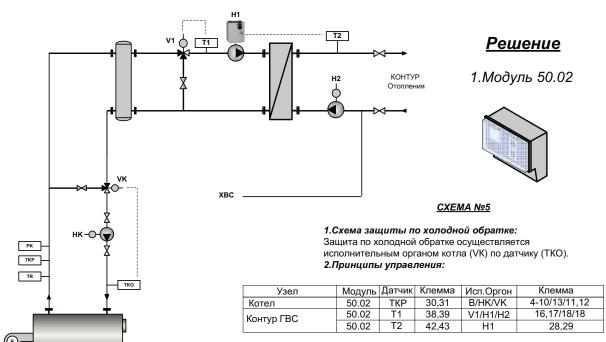

Работа сети без ведущий автоматики 50.01 невозможна

SHTPOPOC

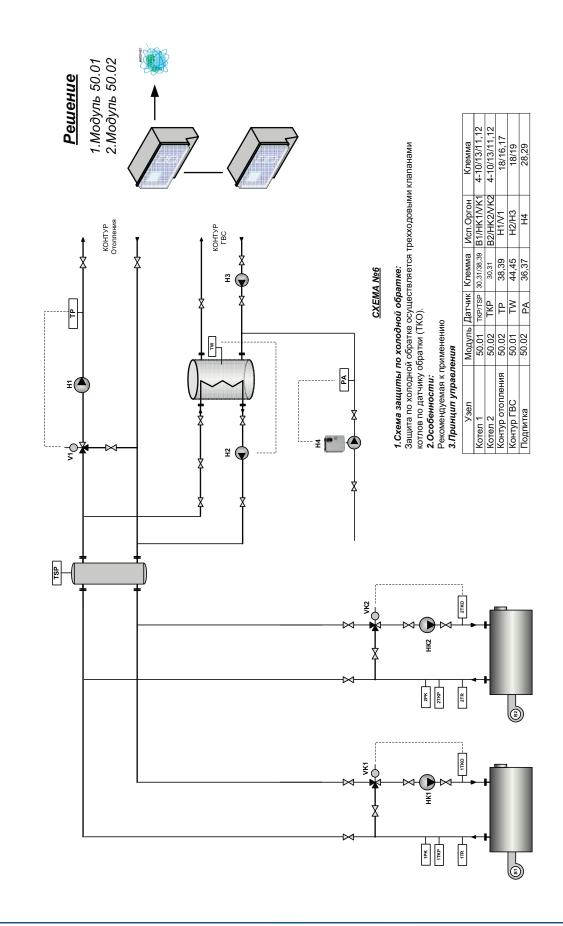

1 котел + ГВС с бойлером и контуром отопления


1 котел + ГВС с бойлером и регулируемым контуром отопления

1котел + ГВС и 2-а контура отопления



1 котел и контур отопления с подпиткой



ЭНТРОРОС

1 котел и контур ГВС

2 котловая система + ГВС (Бойлер) и регулируемый контуром отопления

DHTPOPOC

1.Модуль 50.01 2.Модуль 50.02 3.Модуль 50.04 Решение 4-10/13/11,12 4-10/13/11,12 50/45,48 16,17/18/18 1. Схема защиты по холодной обратке: Защита по холодной обратке осуществляется трехходовыми клапанами котлов по датчику обратки (ТКО).
 Модуль Датчик
 Клемма
 Исп.Оргон

 50.01
 ткртхр
 30.3138.39
 ВИ/НК1/VK1

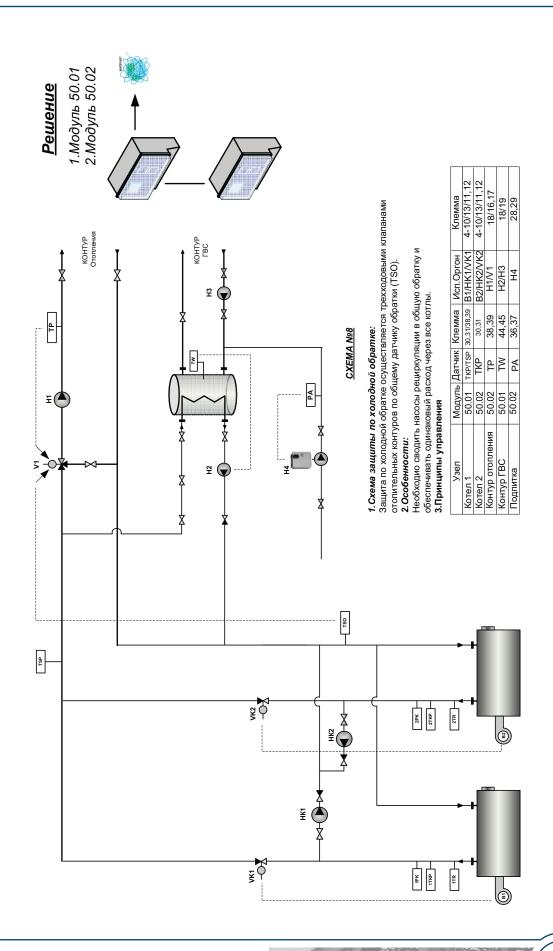
 50.02
 ТКР
 30.31
 BZ/HK2/VKZ
 V2/H2/H3 H1/V1 K3 K3 15,16 38,39 42,43 36,37 CXEMA №7 (a) v3 ≌ 🜘
 50.01
 ТКРТSP

 50.02
 ТКР

 50.04
 ТР

 50.02
 Т1

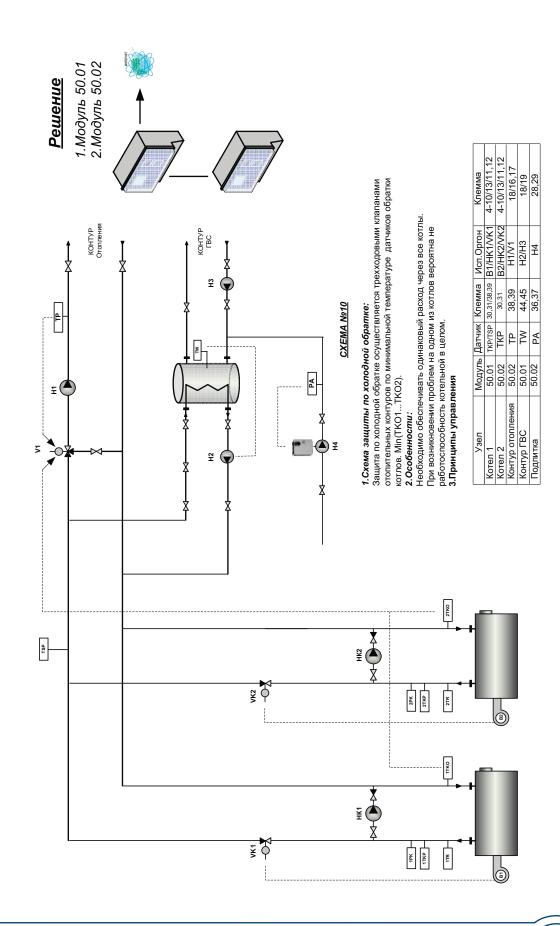
 50.02
 Т2


 50.02
 T2

 50.01
 PA
 T2 ₽-Рекомендуемая к применению ΡA 3.Принцип управления Контур отопления 2.Особенности: Ξ (Контур ГВС Узел Котел 2 Котел 1 **≥-**○ XBC TSP ΥK2 2ТКО 2PK 2TKP 2TR Ϋ́ ¥ ξ 1TKP 1TR

2 котловая система + ГВС (теплообиенник) и регулируемый контуром отопления

17


Подпитка

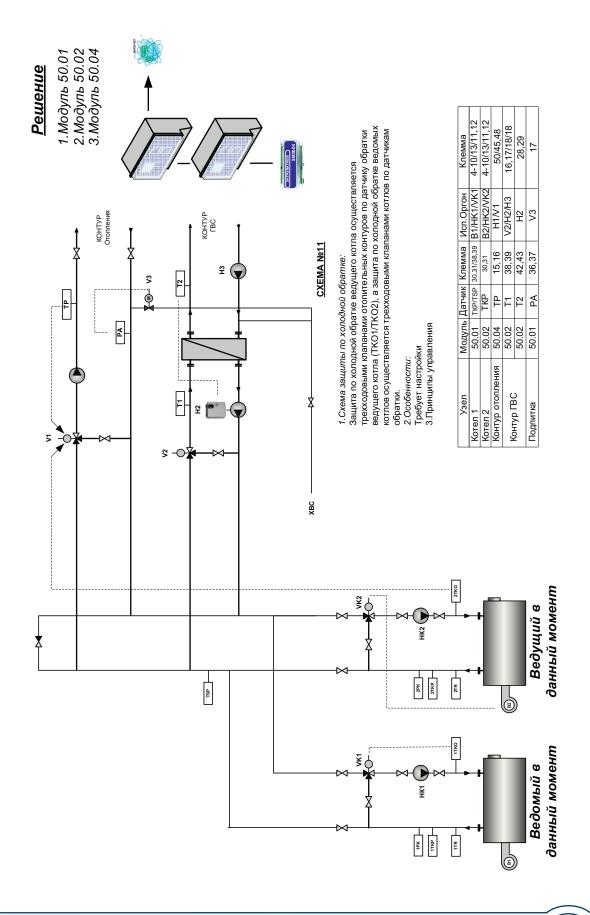
3HTPOPOC

2.Модуль 50.02 3.Модуль 50.04 1. Модуль 50.01 Решение 4-10/13/11,12 50/45,48 16,17/18/18 28,29 Защита по холодной обратке осуществляется трехходовыми клапанами 17 50.01 TKPTSP 30.31/38/39 BJ/HKI/VKI 4 50.02 TKP 30.31 BZ/HKZ/VKZ 4 50.04 TP 15,16 H1/V1 4 50.02 T1 38,39 VZ/HZ/H3 4 50.02 T2 42,43 H2 H2 Необходио сводить насосы рециркуляции в общую обратку и Модуль Датчик Клемма | Исп.Оргон КОНТУР Отопления KOHTYP IBC отопительных контуров по общему датчику обратки (TSO) 8 обеспечивать одинаковый расход через все котлы. 36,37 (m) V3 유 T2 CXEMA №9 1.Схема защиты по холодной обратке: ЬА Α 50.01 3.Принципы управления Ξ Контур отопления 2.Особенности: 일 👛 Контур ГВС Узел Подпитка Котел 2 Котел 1 Σ XBC TSO TSP Š Q 2PK ZTKP 2TR (3) ξ ₹ Ç ₽¥ 1 H 1TKP

2 котловая система + ГВС (теплообиенник) и регулируемый контуром отопления

3HTPOPOC

2.Модуль 50.02 3.Модуль 50.04 1.Модуль 50.01 Решение 4-10/13/11,12 16,17/18/18 50/45,48 Клемма 28,29 Защита по холодной обратке осуществляется трехходовыми клапанами отопительных контуров по минимальной температуре датчиков обратки котлов. Min(TKO1...TKO2). 2 котловая система + ГВС (теплообиенник) и регулируемый контуром отопления Модуль Датчик Клеммиа Исп. Оргон 50.01 ткелтя 30.31/38,38 В1/НК1/ИК1 50.02 ТКР 30.31 В2ИНК2/ИК2 4 50.04 ТР 15,16 H1/V1 4 50.02 Т1 38,39 V2/H2/H3 Необходимо обеспечивать одинаковый расход через все котлы. При возникновении проблем на одном из котлов вероятна не КОНТУР Отопления KOHTYP 꿈 42,43 CXEMA Nº10 1.Схема защиты по холодной обратке: V3 ੜ 🕒 работоспособность котельной в целом. - T2 T2 E ΡA 50.02 3.Принципы управления Контур отопления 2. Особенности: Ξ Контур ГВС Котел 1 Котел 2 무 🌁 72 XBC Ž Ž TSP Š Ó 2PK _____ 2TR ž Ž 1РК ПR


36,37

PA

50.01

Подпитка

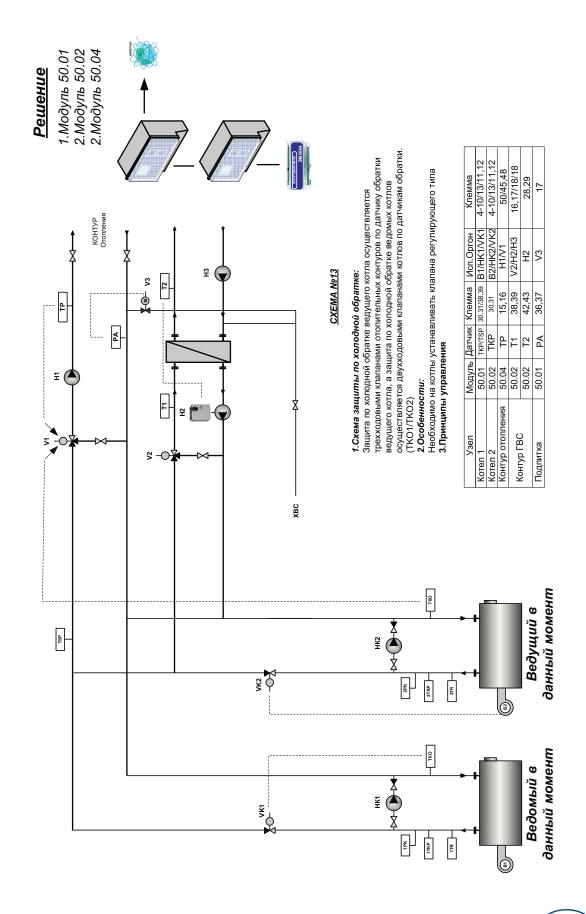
2 котловая система + ГВС (теплообиенник) и регулируемый контуром отопления

SHTPOPOC

1.Модуль 50.01 2.Модуль 50.02 Решение 4-10/13/11,12 4-10/13/11,12 18/16,17 18/19 28,29 трехходовыми клапанами отопительных контуров по датчику обратки ведущего котла(ТКО1/ТКО2), а защита по холодной обратке ведомых котлов осуществляется двухходовыми клапанами котлов по датчикам Необходимо на котлы устанавливать клапана регулирующего типа
 Модуль
 Датчик
 Клемма
 Исп. Оргон

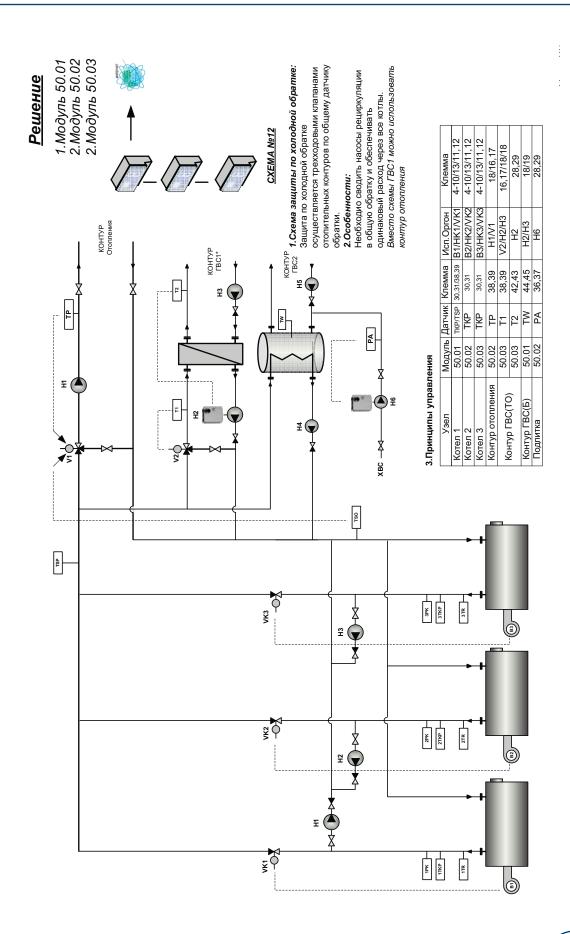
 50.01
 ткелтя
 30.3138,39
 В1/НК1/КК1

 50.02
 TKP
 30.31
 В2/НК2/КК2

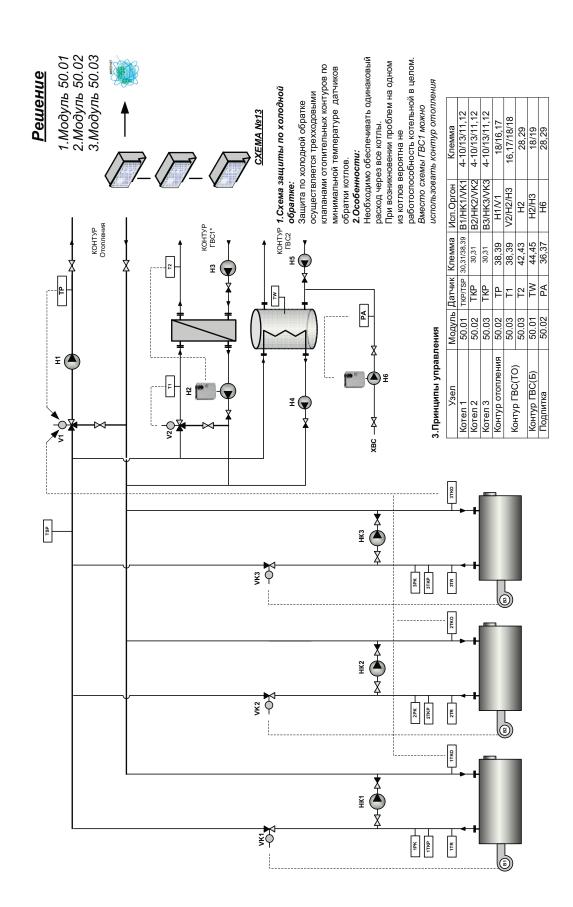

 50.02
 TP
 38.39
 H1/V1

 50.01
 TW
 44,45
 H2/H3

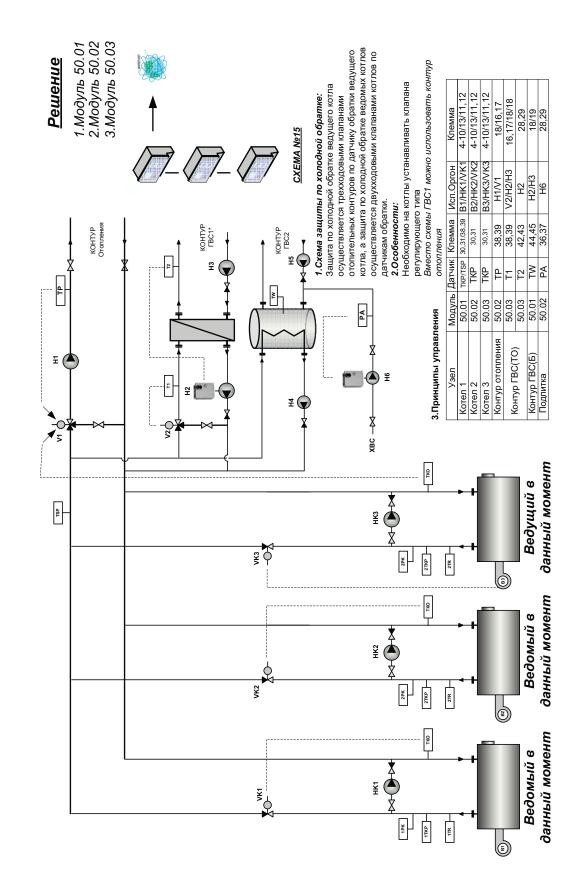
 50.02
 PA
 36.37
 LA
 Защита по холодной обратке ведущего котла осуществляется КОНТУР Отопления KOHTYP FBC CXEMA Nº12 1.Схема защиты по холодной обратке: 유 <u>d</u> 3.Принципы управления Контур отопления Контур ГВС 2.Особенности: ΡĀ **∓** (Узел Котел 2 Котел 1 ₩ ₩ данный момент TKO Ведущий в Ž Ž TSP Ę ₹ Q 2TKP 2TR данный момент TKO Ведомый в ¥ X X 1PK 1TR 1TKP


2 котловая система + ГВС (Бойлер) и регулируемый контуром отопления

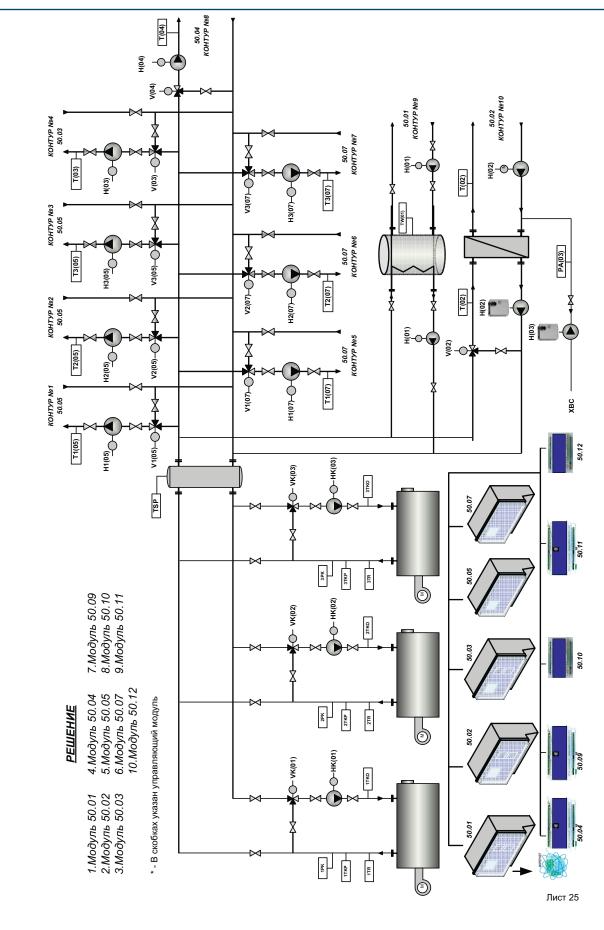
2 котловая система + ГВС (теплообиенник) и регулируемый контуром отопления



3HTPOPOC



3HTPOPOC


3 котловая система + ГВС с бойлером и регулируемым контуром отопления

3 котловая система + ГВС с бойлером и регулируемым контуром отопления

Зх котловая система + ГВС с теплообменником и бойлером + восемь регулируемымых контуров отопления

Таблица 1.

На схемах приняты следующие обозначения

	Значение	Функция
PK	Аналоговый датчик давления	Безопасность
ТКР	Датчик температуры котла(прямая)	Управление котолом
TR	Терморегулятор	Безопасность
TKO (TSO)	Датчик температуры котла (Обратка). В многокотловых установках датчик обратки ТКО модуля 50.01 используется (в зависимости от тепломеханической схемы) в качестве датчика общей обратки (TSO)	Защита котла
TSP	Стратегический датчик температуры многокотловой котельной установки. Может быть подключен только к модулю 50.01	Управление каскадом
НК	Насос котла	Внутрикотловая циркуляция
VK	Исполнительный орган котла	Защита котла
PA	В модуле 51.01 используется как датчик давления для регулирования клапаном подпитки. В 51.02(03) используется как датчик обратной связи для (ПИД регулятор) формирования управляющего сигнала 4-20mA	Управление
TW	Датчик температуры бойлера	
Н	Насосы	
V	Исполнительный оргон	Управление
Т	Датчик температуры	
В	Горелка	
Militrati	Наличие возможности диспетчеризации	
	Модуль внешнего исполнения 50.01,50.02,50.03,50.05,50.07	
SHIFOLIAVICES SM5004	Модуль для установки внутри шкафа 50.04,50.09,50.10,50.11,50.12	

Таблица 2.

Функциональные возможности системы серии 50

Функции	50.01	50.02	50.03	50.04*	50.05	50.07	Примечание	
Ограничение температуры на выходе котла (TR)	+	+	+	-	-	-	TR - механнический терморегулятор входит в состав автоматики управления котла	
Ограничение максимальной температуры на выходе котла (STB)	-	-	-	-	-	-	Для котловой автоматики предусмотренны клеммы (SI) для подключения STB	
Цепочка безопасности	+	+	+	-	-	-	Для котловой автоматики предусмотренны клеммы (SI)	
Отключение горелки при макс/мин. Давлении в котле	+	+	+	-	-	-	Для котловой автоматики при наличии датчика давления	
Функция защиты от минимальной температуры обратной линии котла	+	+	+	-	-	-		
Управление температурой по погодозависимой характеристики	+	+	+	+	+	+		
Управление температурой подачи по постоянно заданному значению	+	+	+	+	+	+		
Управление горелкой в двух ступенчатом режиме	+	+	+	-	-	-		
Управление горелкой в модулированном режиме	+	+	+	-	-	-		
Каскадное регулирование до 3-х котлов	+	-	-	-	-	-		
Кол-во отопительных контуров (трехпоз. Управл. 220В + насос)	-	1	1	1	3	3		
Кол-во контуров (Управление 4-20тА)	-	1	1	-	1	1		
Наличие контура ГВС (по схеме с теплообменником)	-	+	+	-	+	+	В модулях кроме 50.01 функция ГВС с бойлером является составной (объединение 2-х контуров)	
Наличие контура ГВС (по схеме с бойлером)	+	+	+	-	+	+	В модулях кроме 50.01 функция ГВС с бойлером является составной (объединение 2-х контуров)	
Управление подпиткой	+	-	-	-	-	-		
Возможность объединения комплекса автоматики серии 50 в единую сеть по внутренней цифровой шине	+	-	-	-	-	-	Модуль 50.01 является Мастером в сети энтроматик 50	
Возможность передачи данных по протоколу TCP/IP всей сети	+	-	-	-	-	-		
Возможность передачи собственных данных по протоколу TCP/IP	+	+	+	-	-	-	Собственные - ограниченные рамками самого модуля	
Блоки расширения модуля 50.01	50.09	50.10	50.11	50.12		Примечание		
Аналоговые входы	8	-	8	-	8 входов из них 2 - термосопротивление pt1000 6 - 420mA			
Дискретный выход	8	-	8	-	8 входов из них 2 - термосопротивление pt1000 6 - 420mA			
Дискретный вход (для события)	-	-	-	20	Событие - сигналы статуса, и тд			
Дискретный вход (для аварии)	4	20	4	-		Авария - сигналы имеющие приоритет при передаче данных и отображающиеся в скаде APM как аварийные		

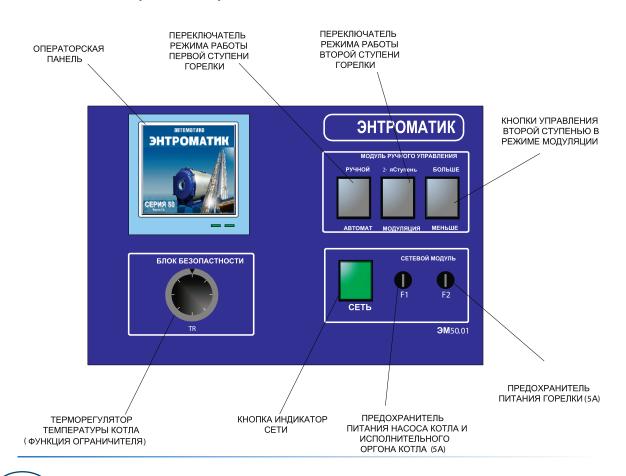
^{* -} Модуль 50.04 является расширением модуля 50.01 и работает только при его наличии

ЭНТРОРОС

ЭНТРОМАТИК 50

Область применения

Система управления ЭНТРОМАТИК 50 разработана для решения вопросов регулирования работы котельной установки:

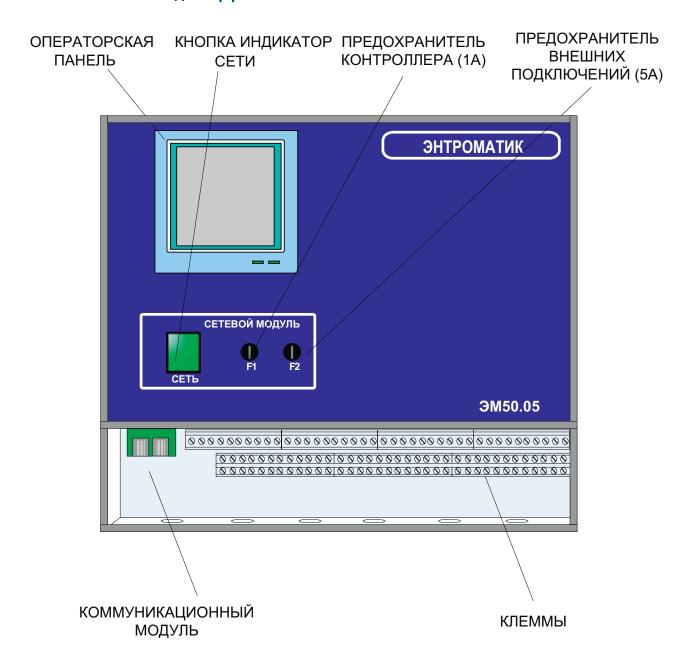

- с одним (до трех в зависимости от подключенных модулей) напольным отопительным котлом;
- с двухступенчатыми и модулируемыми горелками, работающими на жидком топливе, на газе, или горелками комбинированного исполнения;
- управление циркуляционными насосами и трёхходовыми смесительными клапанами для поддержания температуры обратного потока воды котлов;
- управление подпиткой;

- управление контуром ГВС с загрузочным и рециркуляционным насосом;
- управление контуром ГВС с по схеме с теплообменником;

Система управления ЭНТРОМАТИК 50.01 оборудована блоком каскадного управления который обеспечивает последовательное (каскадное) регулирование двухкотловой (трехкотловой) котельной установки в зависимости от изменения общей температуры прямого потока котлов, которая настраивается на постоянное номинальное значение или ориентирована на изменение температуры наружного воздуха.

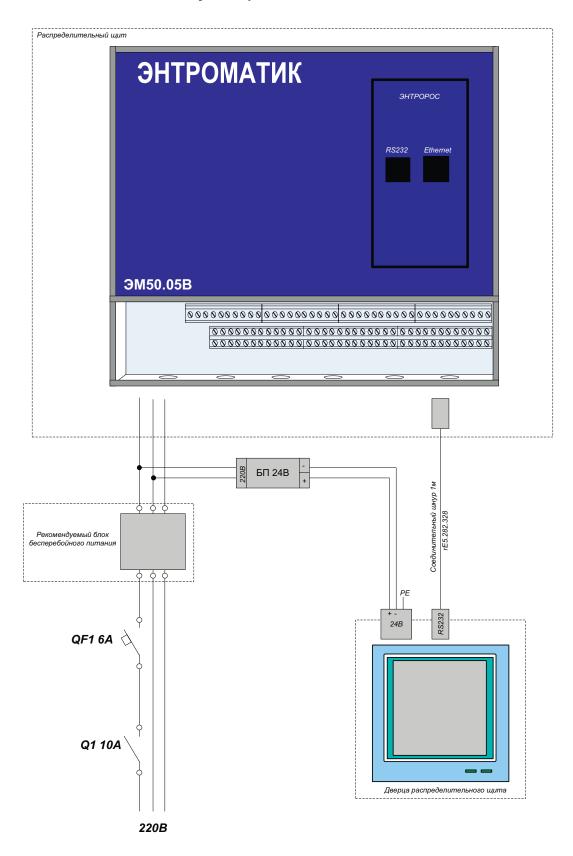
Дополнительно ЭНТРОМАТИК 50.01 (50.02, 50.03) снабжен терморегулятором, который позволяет в ручном режиме управлять первой ступенью горелки, а в автоматическом используется как ограничитель температуры котла (функция безопасности)

Устройство регулирования ЭНТРОМАТИК 50.01 (50.02,50.03)


ЭНТРОМАТИК 50.05 (07)

Область применения

Система управления Энтроматик-50.05(07) разработана как модуль расширения контуров регулирования системы управления серии 50:


- управление контуром (до 4);
- управление системой регулирования температуры в внутри установки

Внешний вид интерфейса

Внешний вид интерфейса 50.05 (07) (шкафное исполнение с выносным пультом)

Основные технические данные и характеристики 50.01 (50.02, 50.03)

Условия эксплуатации

- Температура воздуха от 5 до 50 °С;
- Относительная влажность не более 80 %, без конденсата;
- Атмосферное давление от 86 до 106,7 кПа;
- Вибрация амплитуда не более 0,1 мм с частотой не более 25 Гц;
- Агрессивные и взрывоопасные компоненты в окружающем воздухе должны отсутствовать.

Требования к питанию

- Номинальное напряжение переменного тока 220 В,
- Допускаемые отклонения напряжения питания – от 187 до 242 В;
- Частота от 48 до 50 Гц;
- Потребляемая мощность не более 50 ВА;

Конструктивное исполнение

- Габаритные размеры 280х295х131 мм;
- Масса не более 2 кг;
- Монтаж болтовое настенное соединение
- Степень защиты IP51.

Дискретные входы

- Количество входов 2(АК АН);
- Вид сигнала "сухой" ключ;
- Ток через ключ не менее 10 мА постоянного тока;
- Ток утечки ключа не более 0,05 мА
- Гальваническая изоляция от всех остальных цепей.

Аналоговые выходы (50.02..03)

- Количество выходов 1(AN2);
- Погрешность ЦАП не более 1,5 %;
- Возможные диапазоны сигналов от 4 до 20мА постоянного тока на нагрузку не более 0,5 кОм;

Интерфейс

- RS485 на частоте 57600 Бод (с гальванической изоляцией от остальных цепей);
- RS232C на частоте 115200 Бод; разъем RJ45 для подключения интерфейса Ethernet;

Дискретные выходы

- Тип выхода релейный контакт;
- Максимальное напряжение 250 В переменного тока;
- Коммутируемый ток 3 А переменного тока:
- Характеристики однофазного двигателя 0,185 кВат

Основные технические данные и характеристики 50.05 (50.07)

Условия эксплуатации

- Температура воздуха от 5 до 50 °С;
- Относительная влажность не более 80 %, без конденсата;
- Атмосферное давление от 86 до 106,7 кПа;
- Вибрация амплитуда не более 0,1 мм с частотой не более 25 Гц;
- Агрессивные и взрывоопасные компоненты в окружающем воздухе должны отсутствовать.

Требования к питанию

- Номинальное напряжение переменного тока 220 В,
- Допускаемые отклонения напряжения питания от 187 до 242 В;
- Частота от 48 до 50 Гц;
- Потребляемая мощность не более 50 ВА;

Конструктивное исполнение

- Габаритные размеры 280х295х131 мм;
- Масса не более 2 кг;
- Монтаж болтовое настенное соединение
- Степень защиты IP51.

Дискретные входы

- Количество входов 12;
- Вид сигнала "сухой" ключ;
- Ток через ключ не менее 10 мА постоянного тока;
- Ток утечки ключа не более 0,05 мА
- Гальваническая изоляция от всех остальных цепей.

Аналоговые выходы

- Количество выходов 2;
- Погрешность ЦАП не более 1,5 %;
- Возможные диапазоны сигналов от 4 до 20мА постоянного тока на нагрузку не более 0,5 кОм;

Интерфейс

- RS485 на частоте 57600 Бод (с гальванической изоляцией от остальных цепей).
- RS232С на частоте 115200 Бод;

Дискретные выходы

- Тип выхода релейный контакт;
- Максимальное напряжение 250 В переменного тока;
- Коммутируемый ток 3 А переменного тока;
- Характеристики однофазного двигателя 0,185 кВат

Основные технические данные и характеристики 50.09, 50.10

Условия эксплуатации

- Температура воздуха от 5 до 50 °C;
- Относительная влажность не более 80 %, без конденсата;
- Атмосферное давление от 86 до 106,7 кПа;
- Вибрация амплитуда не более 0,1 мм с частотой не более 25 Гц;
- Агрессивные и взрывоопасные компоненты в окружающем воздухе должны отсутствовать.

Требования к питанию

- Номинальное напряжение переменного тока 220 В,
- Допускаемые отклонения напряжения питания от 187 до 242 В;
- Частота от 48 до 50 Гц;
- Потребляемая мощность не более 6 ВА;

Конструктивное исполнение

- Корпус ОКW Railtec, тип 157, версия I;
- Габаритные размеры 157х86х59 мм;
- Масса не более 0,8 кг;
- Монтаж на DINрейку по стандарту DIN EN 50 022;
- Подключение внешних соединений:
 под винт (максимальное сечение провода 2,5 мм);
 разъем RJ11 для подключения интерфейса
- Степень защиты IP20.

RS232C;

Дискретные входы

- Количество входов 4;
- Вид сигнала "сухой" ключ;
- Ток через ключ не менее 10 мА постоянного тока;
- Ток утечки ключа не более 0,05 мА
- Гальваническая изоляция от всех остальных цепей.

Дискретные выходы

- Количество выходов 8;
- Тип выхода "сухой" транзисторный ключ;
- Максимальное напряжение 48 В постоянного тока;
- Коммутируемый ток от 0,01 до 0,15 А постоянного тока;
- Падение напряжения на открытом ключе не более 1.2 В.

Интерфейс

 RS485 на частоте 57600 Бод (с гальванической изоляцией от остальных цепей).

Индикация

Светодиоды:

- «Сеть» постоянное свечение при нормальной работе и мигание при загрузке алгоритма или сбое;
- «TxD» (прием) и «RxD» (передача) мигание при обмене по интерфейсу RS485.

Основные технические данные и характеристики 50.10, 50.12

Условия эксплуатации

- Температура воздуха от 5 до 50 °С;
- Относительная влажность не более 80 %, без конденсата;
- Атмосферное давление от 86 до 106,7 кПа;
- Вибрация амплитуда не более 0,1 мм с частотой не более 25 Гц;
- Агрессивные и взрывоопасные компоненты в окружающем воздухе должны отсутствовать.

Требования к питанию

- Номинальное напряжение переменного тока 24 B,
- Допускаемые отклонения напряжения питания от ~20,4 до 26,4 В
- Частота от 48 до 62 Гц;
- Потребляемая мощность не более 6 ВА;

Дискретные входы

- Количество входов 20;
- Вид сигнала "сухой" ключ;
- Напряжение на ключе не менее 35В постоянного тока;
- Ток через ключ не менее 10 мА постоянного тока;
- Ток утечки ключа не более 0,05 мА
- Гальваническая изоляция от всех остальных цепей.

Гальваническая изоляция

- Цепи питания модуля / остальные цепи 1500 В (электрическая прочность изоляции);
- Дискретные входы / остальные цепи 100 B;
- Интерфейс RS485 / остальные цепи 100 В.

Интерфейс

 RS485 – для обмена информацией с устройствами сети Контар.

Индикация

Светодиоды:

- «Сеть» постоянное свечение при нормальной работе и мигание при загрузке алгоритма или сбое;
- «TxD» (прием) и «RxD» (передача) мигание при обмене по интерфейсу RS485.

Основные технические данные и характеристики 50.04

Условия эксплуатации

- Температура воздуха от 5 до 50 °C;
- Относительная влажность не более 80 %, без конденсата;
- Атмосферное давление от 86 до 106,7 кПа;
- Вибрация амплитуда не более 0,1 мм с частотой не более 25 Гц;
- Агрессивные и взрывоопасные компоненты в окружающем воздухе должны отсутствовать.

Требования к питанию

- Номинальное напряжение переменного тока ~ 220 В
- Допускаемые отклонения напряжения питания от 187 до 242 В
- Частота от 48 до 62 Гц;
- Потребляемая мощность не более 6 ВА.

Конструктивное исполнение

- Габаритные размеры 157х86х58,5 мм;
- Масса не более 0,8 кг;
- Монтаж на DIN рельс по стандарту DINEN 50 022;
- Степень защиты IP20.

Дискретные входы

- Количество входов 4;
- Вид сигнала "сухой" ключ;
- Напряжение на ключе не менее 35 В постоянного тока;
- Ток через ключ не менее 10 мА постоянного тока;
- Гальваническая изоляция от аналоговых входных и дискретных выходных цепей;
- Частота коммутации не более 300 Гц.

Аналоговые входы

Количество входов – 1;

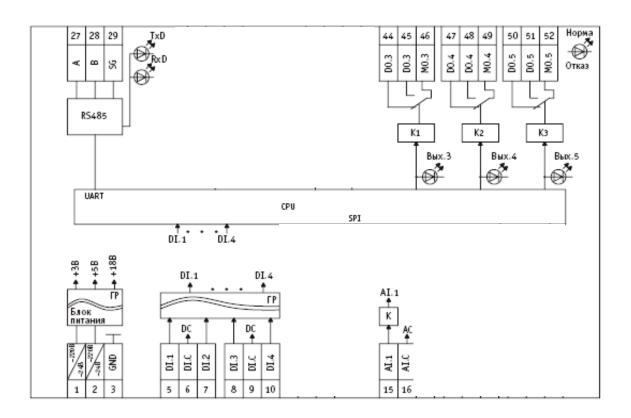
Дискретные выходы (всего 5)

Релейные выходы

- Количество выходов 3;
- Тип выхода "сухой" контакт реле на переключение;
- Максимальное напряжение 250 В переменного тока 50(60) Гц;
- Коммутируемый ток от 0,005 до 3 А;
- Гальваническая изоляция от всех цепей.

Основные технические данные и характеристики 50.04

Интерфейс


RS485 на частоте 57600 Бод.

Дополнительный интерфейс 1

• RS232C на частоте 115200Бод.

Диагностика

- Светодиод статуса контроллера "Норма/ Отказ" (постоянно светится нормальной работе, мигает при загрузке или отключении алгоритма);
- Светодиоды "RS485 прием", "RS485 передача"; светодиод состояния дискретного выхода.

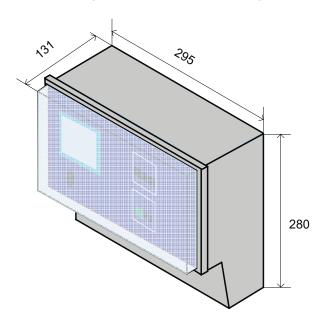
Примечания:

AC – общая точка аналоговая;

DC – общая точка дискретная;

Al – аналоговый вход

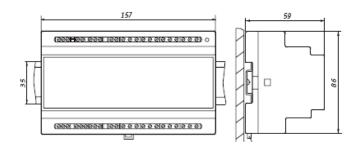
AI.C – общая точка аналоговых входов

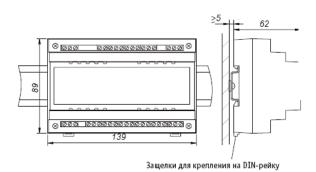

DI – дискретный вход

DI.C — общая точка дискретных входов

DO – дискретный выход

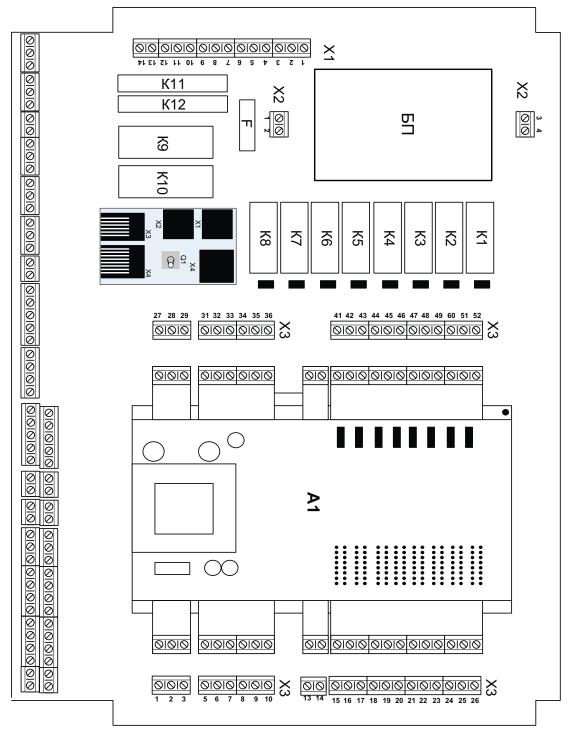
Габаритные размеры


Габаритные размеры модулей 50.01 (50.02, 50.03, 50.05, 50.07)



Габаритные размеры модуля 50.04 (50.09, 50.11)

При размещении приборов в ряду на одной DIN рейке рекомендуется устанавливать их на расстоянии не менее 10 мм друг от друга. Для проводки проводов лучше использовать пластиковые кабельные короба, расстояние от клеммников до короба должно быть не менее 30 мм.


Габаритные размеры модуля 50.04 (50.10, 50.12)

При размещении приборов в ряду на одной DIN рейке рекомендуется устанавливать их на расстоянии не менее 10 мм друг от друга. Для проводки проводов лучше использовать пластиковые кабельные короба, расстояние от клеммников до короба должно быть не менее 30 мм.

SHTPOPOC

Расположение (50.01 – 50.03)

Примечания:

А1 – Контроллер

K1...K12 - Реле

XP — Конфигуратор(устанавливается на заводе)

Х - Клеммы

БП – Блок питания

Техническое обслуживание

В целях обеспечения правильной эксплуатации комплекса автоматики Энтроматик 50 обслуживающий персонал должен пройти производственное обучение на рабочем месте. В процессе бучения персонал должен быть ознакомлен в объеме, необходимом для данной должности, с назначением, техническими данными, работой и устройством комплекса, с порядком подготовки и включения автоматики в работу и другими требованиями данного руководства.

Техническая поддержка комплекса автоматики по управлению котловой установки "ЭНТРОМАТИК 50" обеспечивается специалистами компании Энтророс на сайте по адресу: www.entroros.ru

Для обеспечения нормальной работы рекомендуется выполнять в установленные сроки следующие мероприятия.

В период наладки

Проверять правильность функционирования комплекса в составе средств управления по показаниям контрольно-измерительных приборов, фиксирующих протекание регулируемых технологических процессов

Еженедельно

При работе мудулей расширения в условиях повышенной запыленности сдувать сухим воздухом пыль с клеммных колодок.

Ежемесячно

Сдувать сухим воздухом пыль с клеммных колодок модулей расширения.

Проверять надежность крепления внешних электрических соединений.

Указание мер безопасности

Привключенном питании на клеммах модулей расширения, а также на внутренних элементах конструкции содержится опасное для жизни напряжение. Поэтому модули расширения должны устанавливаться в щитах управления, доступных только квалифицированным, специально проинструктированным специалистам.

Техническое обслуживание комплекса автоматики Энтроматик 51 должно производиться с соблюдением требований действующих "Правил технической эксплуатации электроустановок потребителей" (ПТЭ), "Правил техники безопасности при эксплуатации электроустановок потребителей" (ПТБ), "Правил устройства электроустановок" (ПУЭ).

Обслуживающий персонал при эксплуатации должен иметь не ниже 2й квалификационной группы по ПТБ.

Все модули должны быть надежно заземлены с помощью специально предусмотренной для этой цели клеммы. Эксплуатация комплекса автоматики при отсутствии заземления не допускается. При установке контроллеров в металлический щит управления последний также должен быть заземлен.

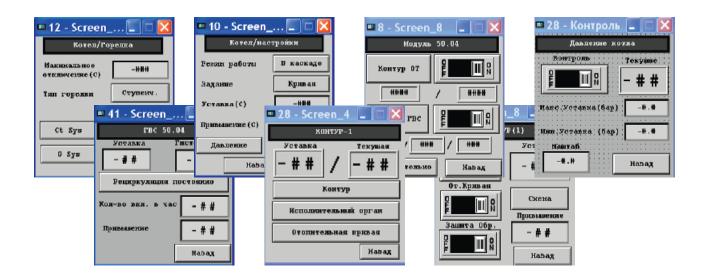
Должно быть обеспечено надежное крепление модулей.

Любые подключения к модулям и техническое обслуживание необходимо производить только при отключенном питании, предусмотрев для этого нужно количество автоматов питания или аналогичных устройств

Не допускается работа модуля с открытой крышкой.

Не допускается попадание влаги на контакты клеммников и внутрь приборов.

Должно быть обеспечено сопротивление изоляции цепей питания, а также силовых цепей от носительно остальных электрических цепей не менее 40 МОм при испытательном напряжении 500 В.


НАСТРОЙКА КОТЛОВЫХ МОДУЛЕЙ 50.01, 50.02, 50.03

ГЛАВА 2

котловой модуль

Рассмотренные вопросы:

- Система безопасности
- Ручной режим
- Интерфейс
- Настройка модуля 50.01
- Настройка модуля 50.02, 50.03
- Заводские настройки

Ввод в эксплуатацию

Перед включением питания:

- проверьте правильность подключения внешних устройств и датчиков температур;
- проверьте положение переключателей на лицевой панели, они должны находиться вположении средних положениях;
- нажмите кнопку СЕТЬ.

На экране операторской панели (ОП) отобразится:

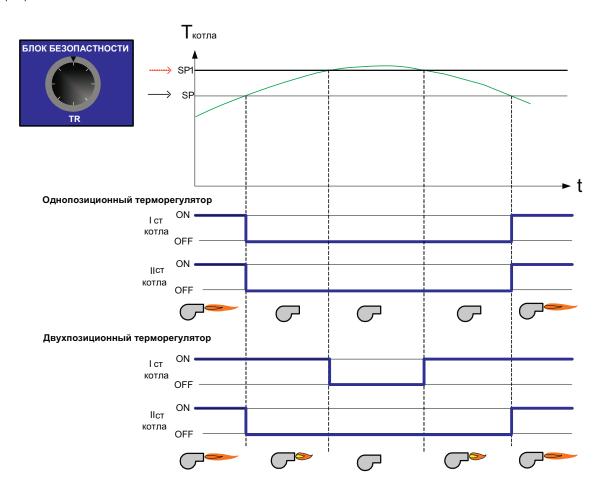
Проверьте показание температуры на терморегуляторе котла.

Терморегулятор котла в ручном режиме

В случае невозможности управлять котлом в автоматическом режиме, предусмотрено управление котлом в ручном режиме.

Чтобы перевести котел в ручной режим работы необходимо выполнить следующие действия:

- 1. Переведите переключатель режима работы автоматики в положение ручной (1-ступ.);
- 2. Для активизации работы второй ступени (модуляции)
- а) для 2х ступенчатой горелки Переключатель режима работы второй ступени установить в положение 2-я Ступень;
- б) для модулируемой горелки горелки Переключатель режима работы второй ступени установить в положение МОДУЛЯЦИЯ и клавешой управления второй ступенью модуляции БОЛЬШЕ-МЕНЬШЕ установить необходимый режим;
- 3. Задать уставки в терморегуляторе TR по достижении которой будет отключена первая ступень горелки



ВНИМАНИЕ!!!

При переключении ЭНТРОМАТИК 50.01 (02,03) из ручного в автоматический режим необходимо изменить уставку температуры котла на терморегуляторе на 105СО, если на терморегуляторе уставка будет меньше чем уставка температуры котла на контроллере, котел в автоматическом режиме будет работать некорректно, поскольку в автоматическом режиме терморегулятор работает как ограничитель температуры котла.

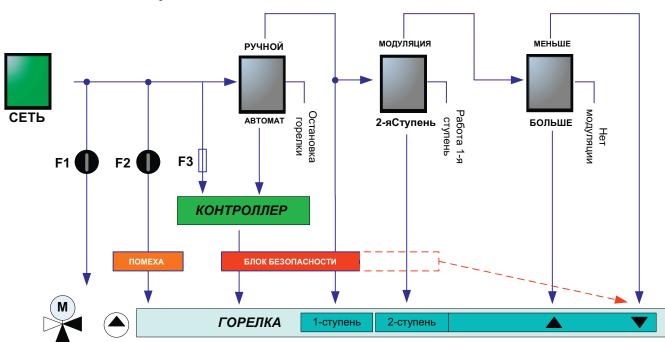
Алгоритм работы терморегулятора

Наглядноработатерморегулятораотображена на графике ниже:

Где:

SP1 — Макс. возможная уставка механически установленная на заводе (Зависит от типа терморегулятора однопозиционный / двухпозиционный). Двух позиционный терморегулятор явлется опцией.

SP — Заданная уставка.


Модуль ручного управления

Модуль ручного управления служит для управления горелкой в ручном режиме.

- Q1 Переключение горелки в режим Автомат./ ручной
- Q2 Переключение (в ручном режиме) горелки в режим двух ступенчатой/модулируемой
- Q3 Управление горелкой в ручном модулируемом режиме
- Q4 Питание автоматики
- F1 Предохранитель 1 (3х ходовые клапана, насос котла)
- F2 Предохранитель 2(Горелка)

Примечания:

- 1. Предохранитель F3 установлен на плате
- 2. Блок безопасности Собственный, установленный внутри автоматики (ТR одно/двух позиционный)
- 3. Помеха внешняя цепочка безопасности (Клемма SI)

Структура безопасности (ограничения)

В сиситеме Энтроматик 50 предусмотрено применение трех предохранительных уровней по обеспечению безопасности котла по перегреву.

1-й предохранительный уровень

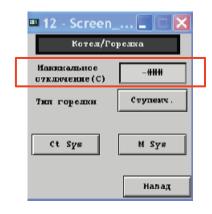
1-й предохранительный уровень обеспечивается логикой работы автоматики. Максимальная уставка ограничения горелки вводится в окне:

Осн. меню > Котел > Горелка > Макс. отключение

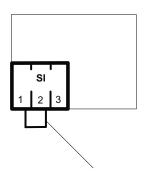
При срабатывании предохранительного уровня происходит отключение ступеней горелки (алгоритмически).

2-й предохранительный уровень

2-й предохранительный уровень обеспечивается входящим в состав автоматики терморегулятором (на передней панели). Ограничительная уставка задается при помощи поворотной ручки.


При срабатывании предохранительного уровня происходит отключение ступеней горелки (механическое).

3-й предохранительный уровень


3-й предохранительный уровень обеспечивается включением в цепочку безопасности SI (1) SI (2) устройства STB, а также сигналов безопасности(Максимальное давление котла, Минимальное давление котла, Минимальный уровень в котле, Загазованность, пожар и т.д.).

При срабатывании предохранительного уровня происходит снятие питания с горелки.

Перемычка устанавливается на заводе. При монтаже цепочки безопасности снять!

ВНИМАНИЕ!!!

Уставки предохранительных контуров должны быть настроены с убыванием от 3-го к 1-му.

Пример:

Максимальное отключение горелки — 90 Терморегулятор (TR) — 115 STB -120

Операторская панель

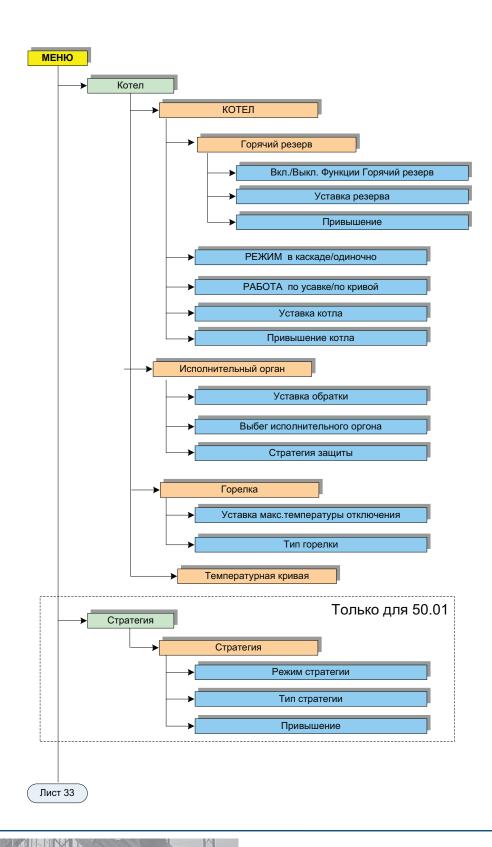
Операторская панель представляет собой пульт для управления пользовательским оборудованием, используя человеко-машинный интерфейс.

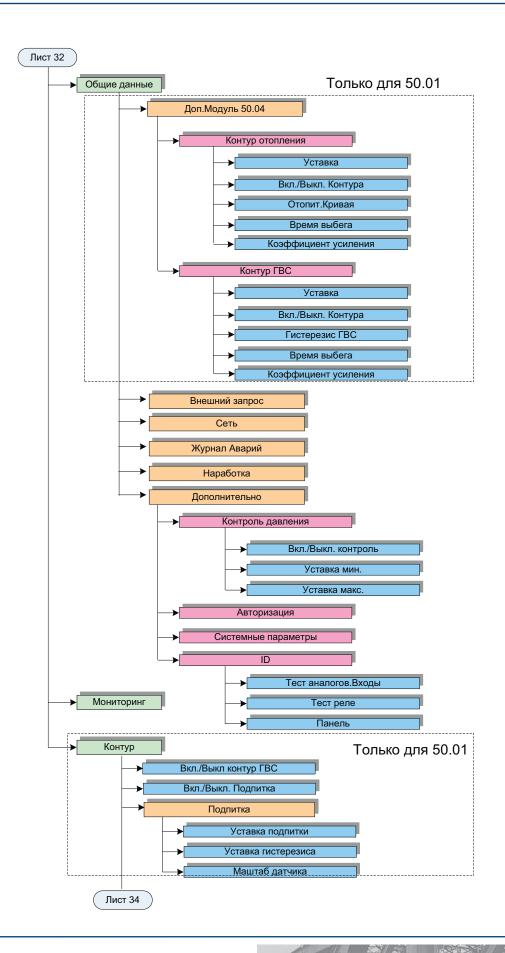
Пульт имеет степень защиты IP-65 (для лицевой панели), дисплей размером 240х240 пикселей 16 оттенков черного (сенсорный экран)

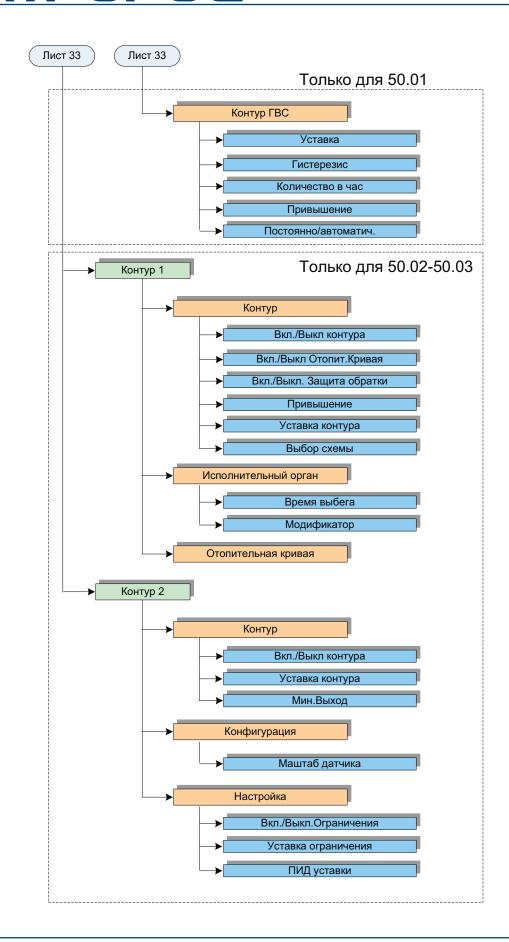
Внешний вид панели:

Индикация:

COM1 – Мигание индикатора указывает на процессы чтения и записи оперативных данных

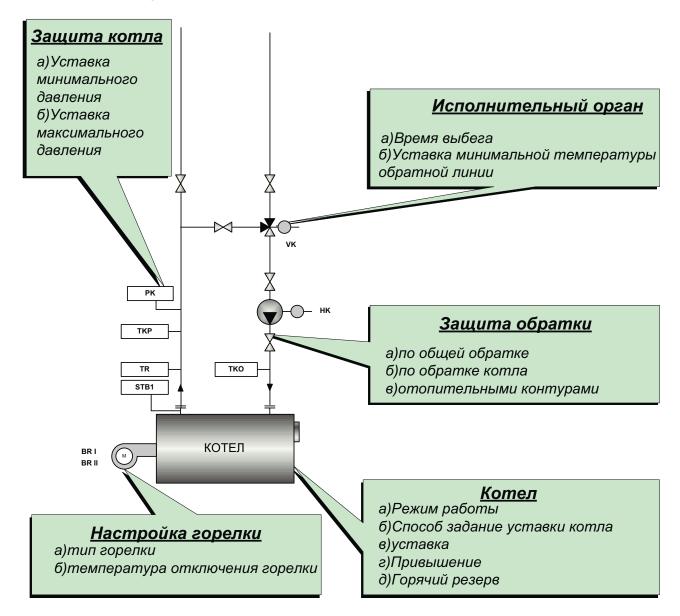



– Наличие питание панели.

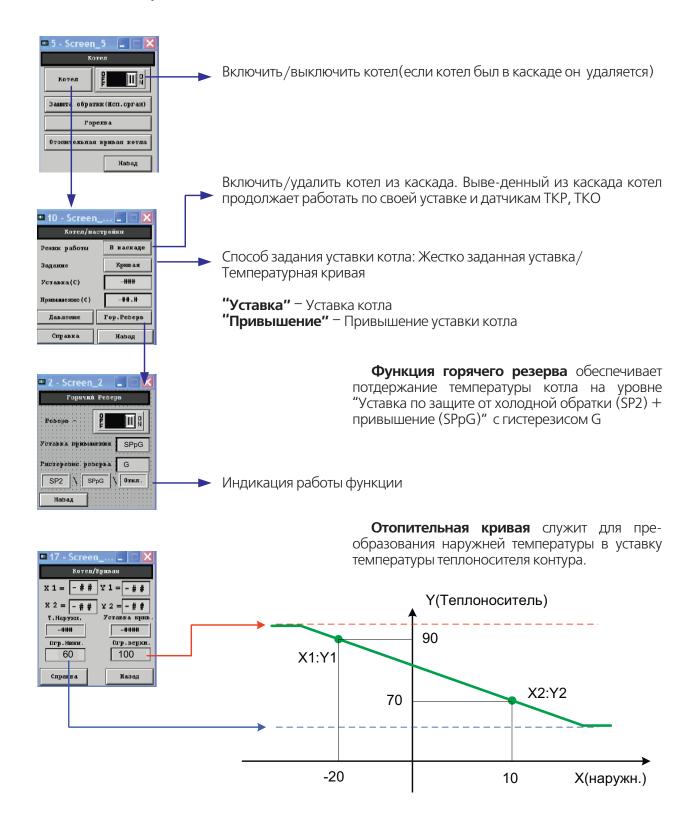

Функциональный алгоритм интерфейса

Ниже приведентиповой алгоритм дерева окон управления а также указан способ перемещения между ними.

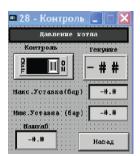
SHTPOPOC


Настройка

Настройка котла Настройка горелки Контроль давления Отопительная кривая

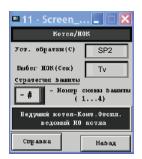

Для перехода между окнами или для ввода уставки необходимо однократно нажать пальцем(указкой) на элемент управления изображенный на экране панели.

Настройка котла


3HTPOPOC

Настройка котла

Т.Наружн. – Наружняя температура **Уставка Крив.** – Расчетная температурная уставка

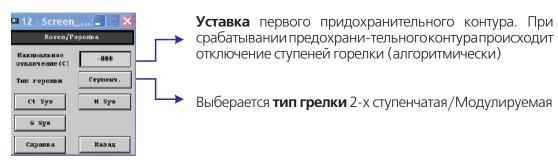

Давление котла

Для использования функции контроля давления необходимо

- 1. Подключить датчик (РК)
- 2. Установить максимальную (минимальную) уставку давления котла выше (ниже) которой произойдет аварийное отключение
- 3. Отмаштабировать датчик
- 4. Включить функцию контроля

Исполнительный орган котла

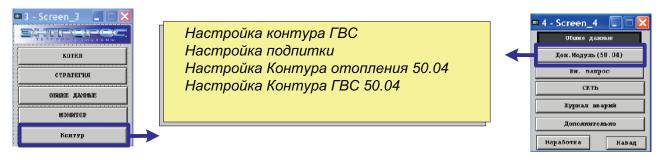
Минимальная уставка обратной линии(SP2).

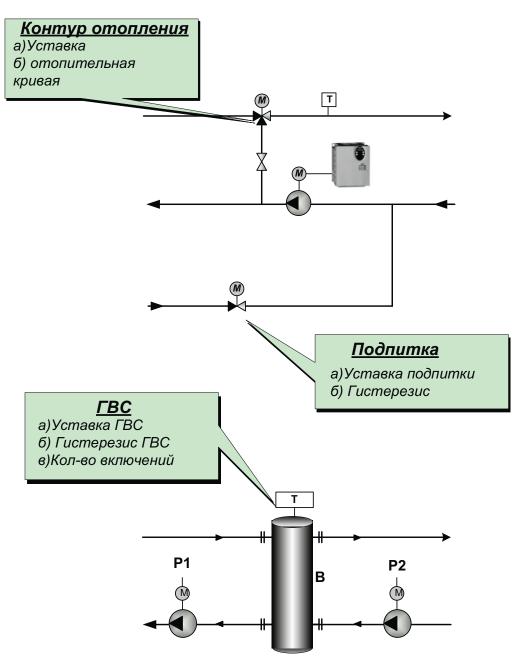

Время выбега исполнительного органа котла (Tv).

Выбор способа защиты котла от холодной обратки (в соответствии с тепловой схемой).

Схема	ИО котла	Задание	Описание	
1	Дроссель	TSO	Защита ИО контура отопления	
2	3-х ходовой	TKO	Защита ИО котла	
3	Дроссель	Min TKO	Защита ИО контура отопления	
4	Дроссель 3-х ходовой	TKO	Ведущий котел защищается ИО КО, Ведомый ИО котла	

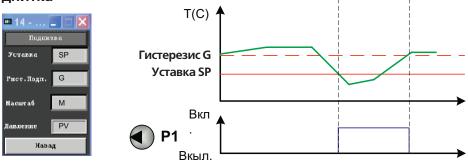
См. Тепловые решения


Настройка горелки



Ct Sys , M Sys ,G Sys системное меню

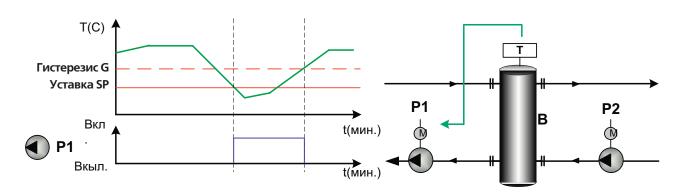
Настройка контуров



Настройка контуров (50.01)

В модуле 50.01 реализованы функции управления контуром ГВС по схеме "с бойлером" и управление клапаном подпитки.

Подпитка



В поле Маштаб задается максимальное значение датчика (в соответствии с его типом)

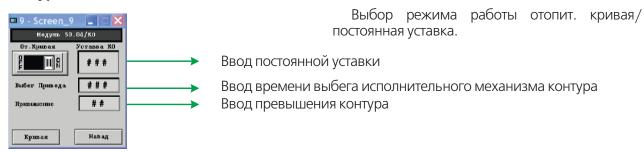
Входной сигнал будет маштабироватся как 4mA-0 Бар 20mA – M Бар

Контур ГВС

Функция ГВС реализует работу контура ГВС по схеме с бойлером. Регулирование производится насосом загрузки бойлера.

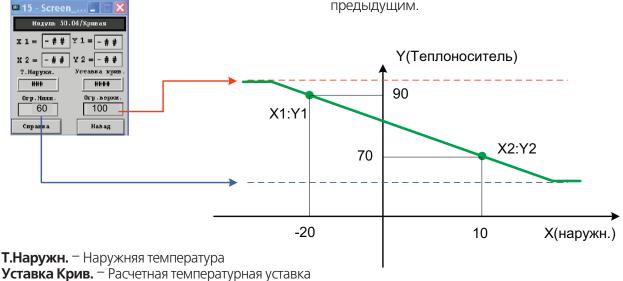
ЭНТРОРОС

Дополнительный модуль 50.04

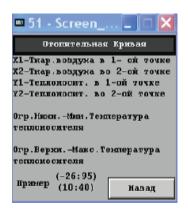

Дополнительный модуль 50.04 предназначен для расширения контуров отопления и ГВС.

Для работы необходим модуль 50.01

Модуль 50.04 настройка



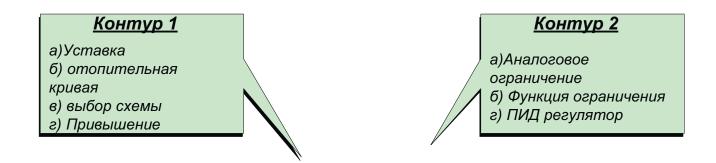
Контур отопления

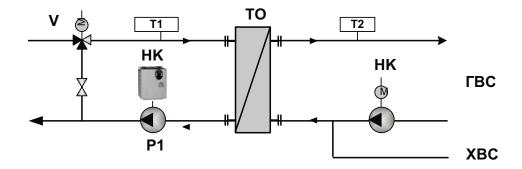


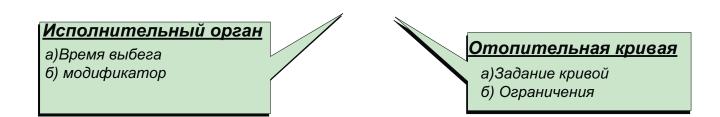
Отопительная кривая

Настройки отопительной кривой аналогичны предыдущим.

Справка


В окне настройки отопительной кривой доп. модуля как и во многих других существует возможность просмотра краткой справки по настройке той или иной функции. Данные справки не заменяют информацию которую можно почерпнуть из инструкции а лишь дополняют ее

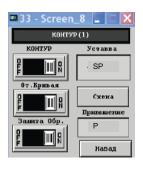



Настройка контуров

Настройка контура 1 (отопления) Настройка многофункционального контура 2

Настройка контуров (50.02-50.03)

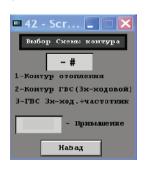
В модулях 50.02 50.03 реализованы функции управления контуром отопления (Контур-1) и вспомогательным контуром в котором для управления исполнительным органом используется аналоговое задание 4-20mA (повысительный насос и т.д.)


КОНТУР -1

Для нормальной работы Контура необходимо подключение датчика температуры контура (IN1) и датчика наружной температуры (IN2)

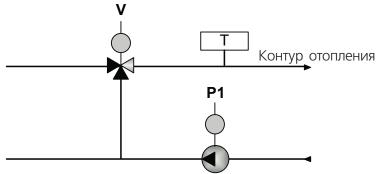
Контур

Контур — Вкл./Выкл контура


От. кривая — Вкл./Выкл отопительной кривой

Уставка – Уставка контура

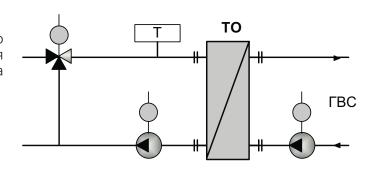
Схема — Выбор тепловой схемы


Привышение – Привышение контура

Схема

Меню выбора технологической схемы

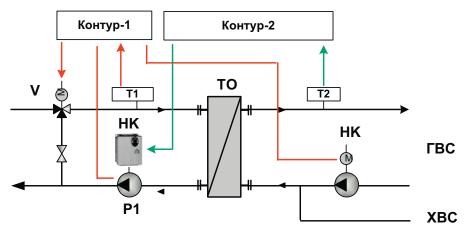
1. Контур отопления



Исполнительный орган (V) управляется по датчику (T). Уставка – либо определяется температурной кривой либо задается жестко (SP).

SHTPOPOC

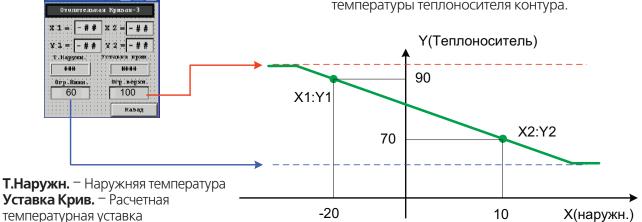
2-Контур ГВС (3-х ходовой)

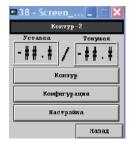

Исполнительный орган (V) управляется по датчику (T). Уставка контура определяется как уставка контура (SP)+ привышение на теплообменнике (PK)


3-Контур ГВС + Частотник

3х-ходовой клапан (V) контура-1 осуществляет регулирование температуры до ТО по датчику Т1, уставка для исполнительного органа V определяется как SP+Pk

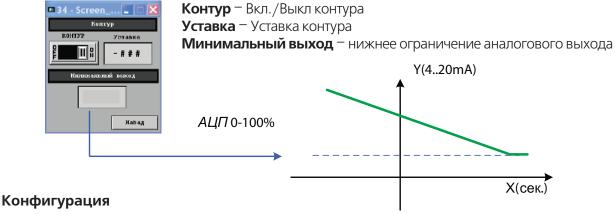
НасосР1оснащенчастотнымрегули-рованием, для задание частоты используется уставка SP и датчик T2 он осуществляет регулирование температуры после TO.


Исполнительный орган контур - 1


Информационные окна отображающие действия исполнительного органа контура – 1 (открывается/закрывается)

Отопительная кривая


Отопительная кривая служит для преобразования наружной температуры в уставку температуры теплоносителя контура.


КОНТУР -2

Контур-2 является как вспомогательным контуром Контура — 1 (При выборе схемы управления №3) при этом уставка контура определяется автоматически так и самостоятельной системой регулирования(по ПИД закону) выходным аналоговым сигналом 4-20mA (при выборе схемы №1 или №2)

Контур

В поле Маштаб задается максимальное значение датчика (в соответствии с его типом). Входной сигнал будет маштабироватся как 4mA-0 Бар 20mA — М Бар

Задание Датчик Температуры Pt1000/аналоговый датчик 4-20mA (только при выборе схемы 1 или 2)

OKHO

3HTPOPOC

Настройка

метра из зоны регулиров В случае если значени Макс. Уставка (SPM) уп навливается в значение Крраликовия В клучае в значение Хуставка (SPM) уп навливается (SPM) уп навливается (SPM) уп навливается (SPM

КР – Коэффициент усиления

TI — Время интегрирования

D – Дифференциальный Коэффициент

Настройка ПИД регулятора

При прочих равных условиях пропорционально-интегрально-дифференциальные или ПИД (PID — Proportional-Integral-Derivative) регуляторы позволяют поднять точность управления в 5-100 раз по сравнению с позиционным регулятором.

При ПИД регулировании сигнал управления зависит от разницы между измеренным параметром и заданным значением, от интеграла от разности и от скорости изменения параметров. В результате ПИД регулятор обеспечивает такое состояние исполнительного устройства (промежуточное между включен или выключен), при котором измеренный параметр равен заданному. Поскольку состояние исполнительного устройства стабилизируется, точность поддержания параметра в системе повышается в десятки раз. Таким образом, закон регулирования обеспечивает точность.

Сигнал управления, который вырабатывает регулятор, определяется тем, насколько велико рассогласование (пропорциональная

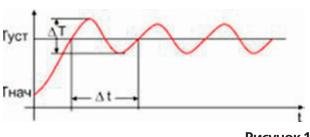


Рисунок 1.

Аналоговое ограничение служит для предотвращения выхода регулируемого параметра из зоны регулирования (функция защиты). В случае если значения датчика больше чем Макс. Уставка (SPM) управляющий выход устанавливается в значение 0 (4mA).

W(p) = KP * $\left[1 + \frac{1}{TI * p} + \frac{D * TI * p}{1 + \frac{D * TI * p}{8}}\right]$

компонента), насколько долго сохраняется рассогласование (интегральная компонента) и, наконец, как быстро изменяется рассогласование (дифференциальная компонента). Качество управления, которое обеспечивает ПИД регулятор в значительной степени зависит от того, насколько хорошо выбранные параметры регулятора соответствуют свойствам системы. Это означает, что ПИД регулятор перед началом работы необходимо настроить.

Этап 1. Настройка пропорциональной компоненты ПИД

Перед настройкой зоны пропорциональности интегральная и дифференциальная компоненты отключаются, либо постоянная интегрирования устанавливается максимально возможной, а постоянная дифференцирования — минимально возможной. Устанавливается необходимая уставка SP. Зона пропорциональности устанавливается равной 0 (минимально возможной). В этом случае регулятор выполняет функции двухпозиционного регулятора. Регистрируется переходная характеристика.

Тнач — начальная температура в системе

Туст – заданная температура (уставка)

Т – размах колебаний температуры

dt – период колебаний температуры

Установить зону пропорциональности равной размаху колебаний температуры равной Т. Это значение служит первым приближением для зоны пропорциональности. Следует проана-

лизировать переходную характеристики еще раз и при необходимости скорректировать значение зоныпропорциональности. Возможныеварианты переходных характеристик показаны на рис. 2.

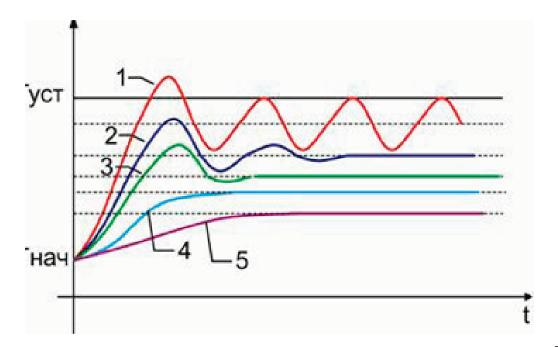


Рисунок 2.

Переходная характеристика типа 1

Значение зоны пропорциональности по-прежнему очень мало, переходная характеристика (а значит, и настройка регулятора) далека от оптимальной. Зону пропорциональности следует значительно увеличить.

Переходная характеристика типа 2

В переходной характеристике наблюдаются затухающие колебания (5-6 периодов). Если в дальнейшем предполагается использовать и дифференциальную компоненту ПИД регулятора, то выбранное значение зоны пропорциональности является оптимальным. Для этого случая настройка зоны пропорциональности считается законченной.

Если в дальнейшем дифференциальная компоненты использоваться не будет, то рекомендуется еще увеличить зону пропорциональности так, чтобы получились переходные характеристики типа 3 или 4.

Переходная характеристика типа 3

В переходной характеристике наблюдаются небольшой выброс и быстро затухающие колебания (1-2 периода). Этот тип переходной характеристики обеспечивает хорошее быстродействие и быстрый выход на заданную температуру. В большинстве случаев его можно считать оптимальным, если в системе допускаются выбросы (перегревы) при переходе с одной температуры на другую.

Выбросы устраняются дополнительным увеличением зоны пропорциональности так, чтобы получилась переходная характеристика типа 4.

Переходная характеристика типа 4

Температура плавно подходит к установившемуся значению без выбросов и колебаний. Этатип переходной характеристики также можно считать оптимальным, однако быстродействие регулятора несколько снижено.

SHTPOPOC

Переходная характеристика типа 5

Сильно затянутый подход к установившемуся значению говорит о том, что зона пропорциональности чрезмерно велика. Динамическая и статическая точность регулирования здесь мала.

Следует обратить внимание на два обстоятельства. Во-первых, во всех рассмотренных выше случаях установившееся значение температуры в системе не совпадает со значением уставки. Чем больше зона пропорциональности, тем больше остаточное рассогласование. Во-вторых, длительность переходных процессов тем больше, чем больше зона пропорциональности. Таким образом, нужно стремиться выбирать зону пропорциональности как можно меньше. Вместе с тем, остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), убирается интегральной компонентой регулятора.

Этап 2. Настройка дифференциальной компоненты td

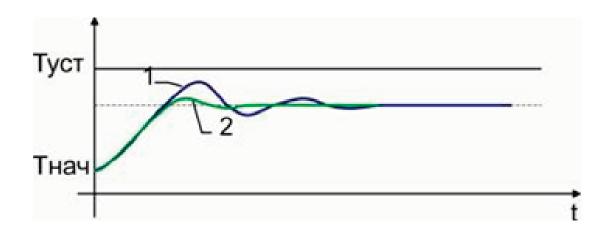


Рисунок 3.

Этот этап присутствует только в том случае, если применяется полнофункциональный ПИД регулятор. Если дифференциальная компонента применяться не будет (используется пропорционально-интегральный (ПИ) регулятор), то следует сразу перейти к этапу 3 (Настройка интегральной компоненты ti).

На этапе 1. настройки зоны пропорциональности установлена зона пропорциональности, соответствующая переходной характеристике типа 2, в которой присутствуют затухающие колебания (см. рис.1, кривая 2, рис.3, кривая1.). Следуетустановить постоянную времени дифференцирования так, чтобы пере-

ходная характеристика имела вид кривой 2 на рис.3. В качестве первого приближения постоянная времени дифференцирования делается равной ti=0,2Dt.

Примечательно то, что дифференциальная компонента устраняет затухающие колебания и делает переходную характеристику, похожей на тип 3 (см. рис.2). При этом зона пропорциональности меньше, чем для типа 3. Это значит, что динамическая и статическая точность регулирования при наличии дифференциальной компоненты (ПД-регулятор) может быть выше, чем для П-регулятора.

Этап 3. Настройка интегральной компоненты ti

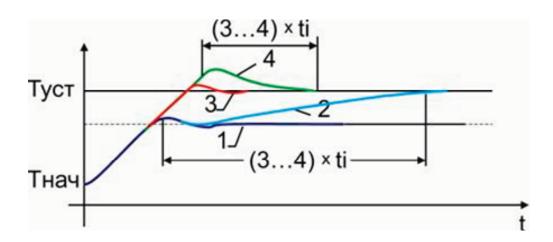


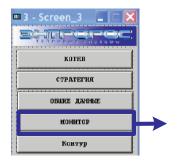
Рисунок 4.

65

После настройки пропорциональной компоненты (а при необходимости и дифференциальной компоненты) получается переходная характеристика, показанная на рис., кривая 1. Интегральная компонента предназначена для того, чтобы убрать остаточное рассогласование между установившимся в системе значением температуры и уставкой. Начинать настраивать постоянную времени интегрирования следует с величины, равной Dt.

Переходная характеристика типа 2

Получается при чрезмерно большой величинепостоянной времениинтегрирования. Выход на уставку получается очень затянутым и длится примерно (3...4) rti.


Переходная характеристика типа 4

Получается при слишком малой величине постоянной времени интегрирования. Выход на уставку также длится (3...4)ti. Если постоянную времени интегрирования уменьшить еще, то в системе могут возникнуть колебания.

Переходная характеристика типа 3

Оптимальная.

DHTPOPOC

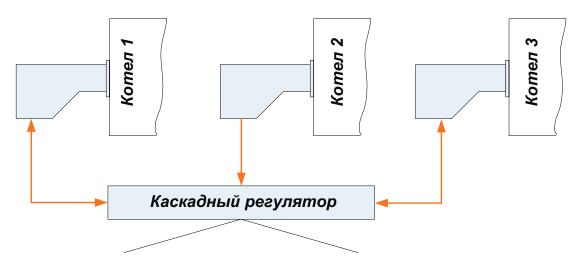
Мониторинг котла Мониторинг каскада Мониторинг контуров Мониторинг доп.модуля

Мониторинг

50.01

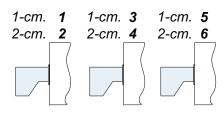
- 1. Прямая
- 2. Уставка котла
- 3. Обратка
- 4. Темп.стратегии
- 5. Уставка стратегии
- 6. Ведущий/ведомый
- 7. Состояние автоматики
- 8. Запрос 1-й ступени
- 9. Запрос 2-й ступени
- 10. Работа насоса котла
- 11-12. Положение исполнительного оргона котла
- 13. Температура ГВС
- 14. Давление подпитки
- 15. Температура КО
- 16. Уставка КО
- 17. Температура ГВС
- 18. Уставка ГВС

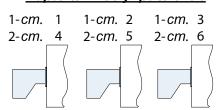
50.02, 50.03



- 1. Прямая
- 2. Уставка котла
- 3. Обратка
- 4. Состояние автоматики
- 5. Ведущий/ведомый
- 6. Текущ.Темп.
- 7. Уставка
- 8. Текуш.Темп.
- 9. Уставка
- 10. Запрос 1-й ступени
- 11. Запрос 2-й ступени
- 12. Работа насоса котла
- 13-14. Положение исполнительного оргона котла
- 15. Давление котла

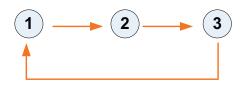
Стратегия (только для 50.01)


Настройка стратегии Настройка каскада


<u>Информация о подключенных</u> <u>горелках и тип управления</u>

- а)Управление осуществляется 2х-Ступенчатыми/Модулируемыми горелками
- б) Тип управления Последовательно/ паралельно
- в)Привышение

Последовательное управление


Паралельное управление

Работа каскада

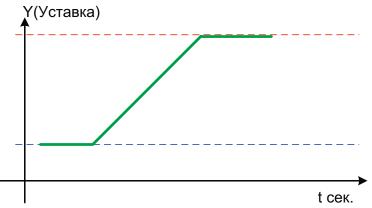
- а)Принудительная смена каскада
- б) Вкл./Выкл.смены каскада

Смена каскада

В модулируеиои режиме работа производится только последовательно

Стратегия

Стратегия/стратегия



Тип управление горелками (тип горелок) **2х ступенчатые/модулируемые**

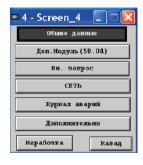
Тип каскада последовательный / паралельный

Привышение уставки стратегии над контурами

Функция ограничения (верх/низ) ограничивает стратегическую уставку в заданных диапазонах.

Каскад

Включить/выключить смену каскада (автоматически)


Принудительная смена каскада

Время каскада время переключения каскада

Отработанное время

Номер ведущего котла

Общие данные

Внешний запрос Сеть Журнал аварий Дополнительные настройки

Сеть

В окне **СЕТЬ** отображается мониторинг сетевых подключений комплекса Энтроматик 50.Также указывается какой из котловых модулей является ведущим и наличие в модуле помехи. В модулях диспетчеризации указывается на наличие обрыва подключенного датчика или наличии аварийного сигнала.

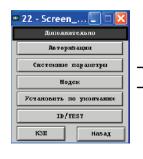
Журналы аварий

Энтроматик 50 ведет два журнала аварий. 1-й журнал аварий с указанием даты и время возникновения и квитирование аварийной ситуации, а так же журнал активных аварий где указываются активные на данный момент аварии.

S - Возникновение

А – Квитирование

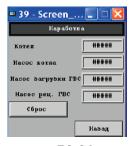
Внешний запрос



Функция запроса реализована в модуля 50.01 и служит для внешнего задания запроса температуры при помощи сигнала 4..20mA.

В окне Внешнего запрса маштабируется входящий аналоговый сигнал (4mA – **Минимум**).

В графе **Вход** отображается полученная температура.


Дополнительно

Меню для входа в дополнительные настройки системы.

Вход в системное меню (для заводских испытаний)

Наработка


Отображается наработка. Исходными данными для счета является запрос на включение.

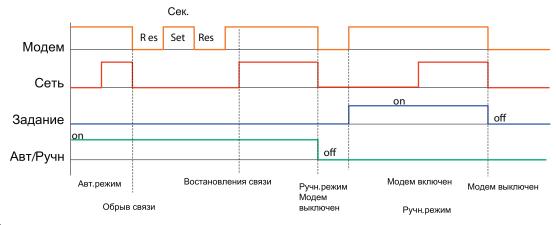
50.01

69

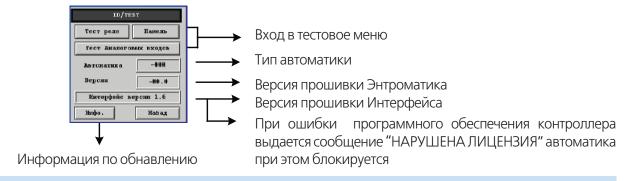
Общие данные /Дополнительно

Тест реле Настройки панели Настройки модема Настройки порта(Modbus)

Модем


В меню Модем задается алгоритм работы модема при потери и востановлении связи с сервером. Данное окно доступно при наличии модуля 50.09.

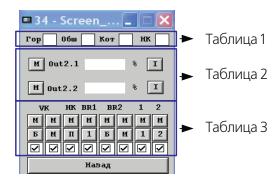
Автоматич. режим – вкл./выкл. автоматического режима


Функция – вкл./выкл. Функции модема

Задание – состояние модема в ручном режиме

- индикатор состояния модема
- индикатор состояния сервера

ID/TEST



ВНИМАНИЕ!!!

Алгоритм контроллера защищен от перезаписи. Попытка перезаписать bin файл контроллера в другой контроллер не относящийся к автоматики "Энтроматик" приведет к ошибке "НАРУШЕНА ЛИЦЕНЗИЯ" и как следствие к блокированию автоматики в течении суток (время отключения определяется случайным образом)

Тест-реле

Вход в меню разрешен только специалистам. Функция предназначена для облегчения пусконаладочных работ (проверка исполнительных органов контура).

Для принудительного управления Выходами необходимо перевести проверяемый выход в ручной режим,

Таблица 1 Дискретные входы

Элемент	Элемент Событие		Значение		
1 🔲	1 🗸	Авария горелки	Фаза 5BR		
2	2 V	Общая авария	SI		
3 🔲	3 V	Авария котла	AK (22-23)		
4	4 V	Авария нас. котла	AH (24-25)		

ВНИМАНИЕ!!!

Для принудительного управления Выходами необходимо перевести проверяемый выход в ручной режим.

Аналоговые выходы

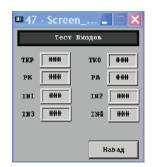
Таблица 2

Элемент	Событие	51.01		51.02(03)		
Ап 1	Ввод	Аналоговый выход 1 0-10В	K11 18OUT2	Аналоговый выход 1 0-10В	K11 180UT2	
Ап 2	Ввод	Аналоговый выход 2 0-10В	K12 18OUT2	Аналоговый выход 2 4-20mA		

Дискретные выходы

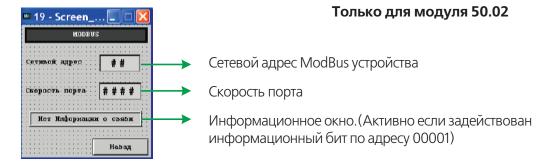
Таблица 3

Элемент	Событие	Значение		
VK	Б	Исп.Орган Котла (открытие)		
VK	M	Исп.Орган Котла (закрытие)		
HK	Б	Насос котла		
BR1	M	1-я ступень		
BR2	Б	2-я ступень (открытие)		
BR3	M	2-я ступень (закрытие)		
1	1	16OUT1		
2	2	17OUT1		


Элемент – изображение в неактивном виде

Событие — изображение в активном виде (после нажатия)

Значение – действие по событию



Тест аналоговых входов

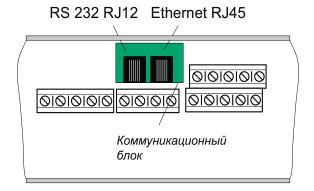
Отображаются значения от подключенных датчиков

Hacтройкa ModBus

Модуль обеспечивает связь с Modbusустройствами со следующими настройками коммуникационного интерфейса: 8 информационных бит, контрольный бит отсутствует, 1 стоповый бит. Скорость порта задается с помощью операторской панели.

Настройки параметров порта RS232C для обмена данными по протоколу Modbus. Скорость

Уставка	1	2	3	4	5	6	7
Скорость	2400	4800	9600	19200	38400	57600	115200


ВНИМАНИЕ!!!

Для того, чтобы изменения скорости вступили в силу, необходимо перезапустить модуль.

Порты Ввода/Вывода

Модули 50.01 (02,03) внешнего и внутреннего исполнения оборудованы портами ввода вывода информации.

Для внешнего исполнения (Рис. 1) внутри клемного отсека установлен коммуникационный блок оснащенный двумя внешними портами и конфигуратором (тумблер) порта 1.

Конфигуратор	Port 1	Port 2
Левое положение	Порт отключен. Осуществляется связь контроллера с операторской панелью	
Правое положение	Подключение программой "Консоль" при этом связь с ОП разорвана Шнур для подключения rE5.282.317	Ethernet

Подключение к интерфейсному каналу Ethernet

Канал **Ethernet** предназначен для подключения модуля 50.01 к сети приборов Энтроматик серии 50 к **сети Ethernet** и организации коммуникационного канала выхода в ИНТЕРНЕТ, а также для подключения к ПК и КПК черезпорт Ethernet. Для отображения данных о всех модулях находящихся в сети подключение необходимо осуществитьк модулю Энтроматик 50.01 через разъем RJ45.

При подключении к ПК и КПК, на которых установлена программа КОНСОЛЬ пользователь, может производить **дистан-ционно**: наладку системы автоматизации

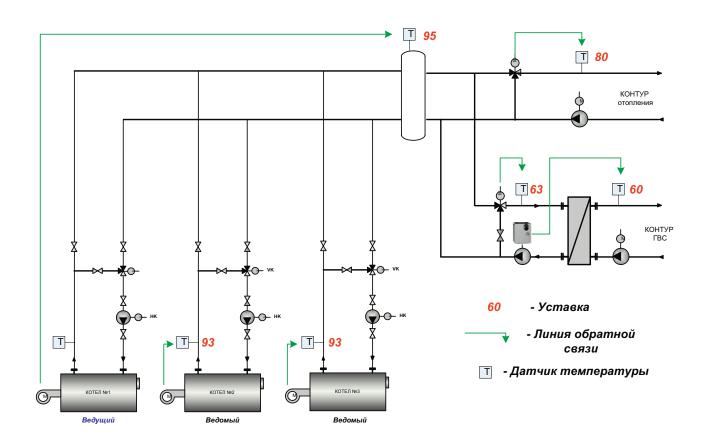
объекта, загрузку bin файла функционального алгоритма, управление и мониторинг параметров.

При таком использовании рекомендуется выбирать модель КПК со встроенной картой WiFi, в противном случае карта WiFi приобретается отдельно.

Основное назначение интерфейсного канала **Ethernet** использование для мониторинга и диспетчеризации объекта через системы **КОНТАР-АРМ**.

Аварийные ситуации

Авария	Причина	Действие	Способ устранения
Авария Горелки	рия Горелки Возникновение фазы на клемме 5		Устранить аварию горелки
Цепь Безопасности	Разрыв цепи безопасности клеммы 1,2	Остановка котла, выход из каскада	Устранить внешнею помеху
Авария Котла	Цепь замкнута клеммы 22,23	Остановка котла, выход из каскада	Устранить аварию котла
Авария Насоса котла	Цепь замкнута клеммы 24,25	Остановка котла, выход из каскада	Устранить аварию насоса
Помеха давление	-Отсутствует датчик давления котла -Давление вышло за уставку	Остановка котла, выход из каскада	-Проверить давление -При отсутствии атчика отключить контроль авления
Обрыв Датчика ГВС (50.01)	Отсутствие или обрыв датчика	Остановка контура	Устранить обрыв или отключить контур
Обрыв Датчика давления	Отсутствие или обрыв датчика	Остановка котла, выход из каскада	Устранить обрыв или отключить контроль авления
Обрыв Датчика наружной температуры Отсутствие или обрыв датчика		Замена значения на последнее измеренное	Устранить обрыв или отключить темп.кривую
Обрыв Датчика обратки котла	-Отсутствие или обрыв датчика - Неверно выбрана схема защиты по холодной обратке	Устанавливается значение равное Т.Прямой-5С	Устранить обрыв или проверить способ защиты обратки
Обрыв Датчика Отсутствие или обрыв датчика		Устанавливается значение равное Т.Обратки + 5C	Устранить обрыв
Обрыв Датчика прямой и обратки котла	Отсутствие или обрыв датчика	Остановка котла, выход из каскада	Устранить обрыв
Обрыв Датчика подпитки (50.01)	Отсутствие или обрыв датчика	Прекращения подпитки	Устранить обрыв,отключить подпитку
Внешняя помеха (50.02, 50.03)	Цепь замкнута клеммы 44,45	Информирование	Устранить Помеху
Обрыв Датчика Т1 Отсутствие или обрыв датчика		Остановка контура	Устранить обрыв или отключить контур
Обрыв Датчика Т2 Отсутствие или обрыв датчика датчика		Остановка контура	Устранить обрыв или отключить контур
Обрыв Датчика давления контура (Д4) (50.02, 50.03)		Остановка контура	Устранить обрыв или отключить контур


Формирование уставок

Для одиночного режима

Для каскадного режима

108 С + Стратегическое привышение = 3 **= 111 С** (уставка для ведущего котла)

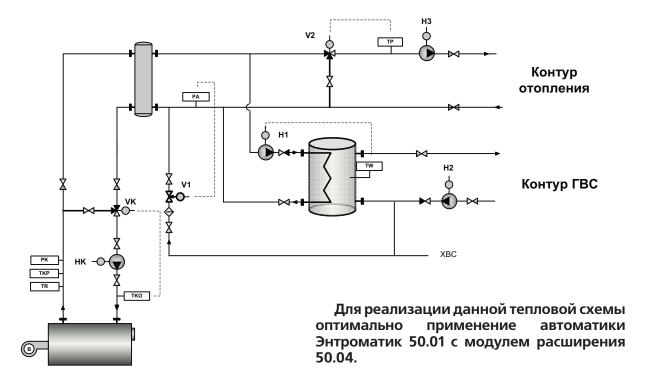
PHTPOPOC

Формирования уставок (пример)

Автоматика	ЭМ50.01 ЭМ50.02		ЭM50.03			
Управление	КОТЕЛ 1	КОТЕЛ 2	Конт. отопл.	КОТЕЛ 3	Контур	Ан. управ.
Уставка	75	75	80	75	63	60
Превышение контура	0	0	10	0	5	5
Превышение котла	3 3		3			
Запрос котла	78 93		78			
Уставка ведомого	93					
Стратегич. превышение	2					
Уставка стратегии	95					
Каскад	ведущий ведомый ведомый					
Расчетные установки	95 93 93					

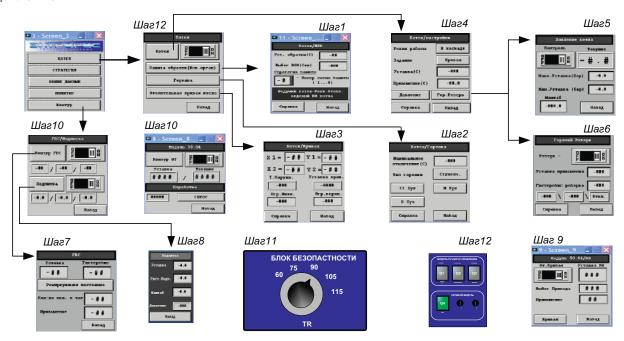
Заводские настройки

Раздел	Уставка	Макс.	Мин.	Уставка
	65	80	50	Уставка мин.температуры обратной линии
	120	900	30	Выбег исполнительного органа котла
	1	3	1	Стратегия защиты
		Одиночно		Режим работы
	Пос	тоянная уставк	: :a	Задание уставки
	70	115	5	Уставка котла
	3	20	0	Превышение котла
	-26	40	-40	Отопительная кривая Х1
	10	40	-40	Отопительная кривая Х2
	95	115	15	Отопительная кривая Ү1
	40	115	15	Отопительная кривая Ү2
Котел	100	115	15	Макс.Ограничение кривой
1.01631	55	115	15	Мин.Ограничение кривой
	90	115	60	Максимальное отключение горелки
		 Іодулируемая		Тип горелки
	10	Выключен		Котел
		Выключен		Контроль авления
	4,5	10	0,1	Максимальное давление котла
	1	2	0,1	Минимальное авление котла
	10	100		Масштаб(атчик авления)
	10 100 1 Выключен		ı ı	Горячий резерв
			2	
	5	50	3 5	Превышение горячего резерва
	10	50		Гистерезис Гор.Резерва
	300	900	100	Время работы каскада
Стратегия (Только для 50.01)	115	115	50	Верхние ограничение стратегии
(ТОЛВКО ДЛЯ ЭО.ОТ)	60	115	50	Нижнее ограничение стратегии
	3	10	1	Стратегическое привышение
	2.5	Выключен		Подпитка
Попитка (Только для 50.01)	2,5	10	1	Уставка подпитки
(10.06 кіц олакот)	0,3	3	0,1	Гистерезис подпитки
	10	100	1	Масштаб(атчик подпитки)
		Выключен		Контур ГВС
	5	20	1	Гистерезис ГВС
Контур ГВС	4	6	1	Кол-во включений насоса в час
(Только для 50.01)	60	80	30	Уставка ГВС
	5	20	0	Превышение контура ГВС
		Постоянно		Режим работы
	Выключен			Контур-1
	Выключен			Отопительная кривая
V 0.17 17 1	Выключен			Функция защиты котла
Контур 1 (Только для 50.02, 50.03)	70	115	15	Уставка контура
7	10	50	0	Превышение контура
	3	10	0	Превышение над теплообменником
	1	3	1	Схема


Раздел	Уставка	Макс.	Мин.	Уставка
	120	900	1	Время выбега исполнительного органа
	1	10	0,1	Модификатор
	-26	40	-40	Отопительная кривая X1
Контур 1 (Только для 50.02,	10	40	-40	Отопительная кривая X2
50.03)	95	115	15	Отопительная криваяҮ1
	40	115	15	Отопительная кривая Ү2
	100	115	15	Макс.Ограничение кривой
	60	115	15	Мин.Ограничение кривой
		Выключен		Контур-2
		Выключено		Ограничение
	20	90	20	Ограничение Ан.Выхода
	70	100	60	Уставка контура
	6	100	1	Уставка ограничения
Контур 2	8	100	1	ПИД-Р
(Только для 50.02, 50.03)	12	100	1	пид-ті
	0	100	0,1	ПИД-D
	Датчик температуры			Заание
	10	100	1	Масштаб
	Выключена			Функция модема
	600	900	1	Соеинение
	10	60	1	Рестарт
	3	7	1	Скорость порта RS232
прочее		Выключен		Внешний запрос
	0	100	0	Минимальное задание
	100	100	0	Максимальное задание
		Закрыт		Доступ к системным настройкам

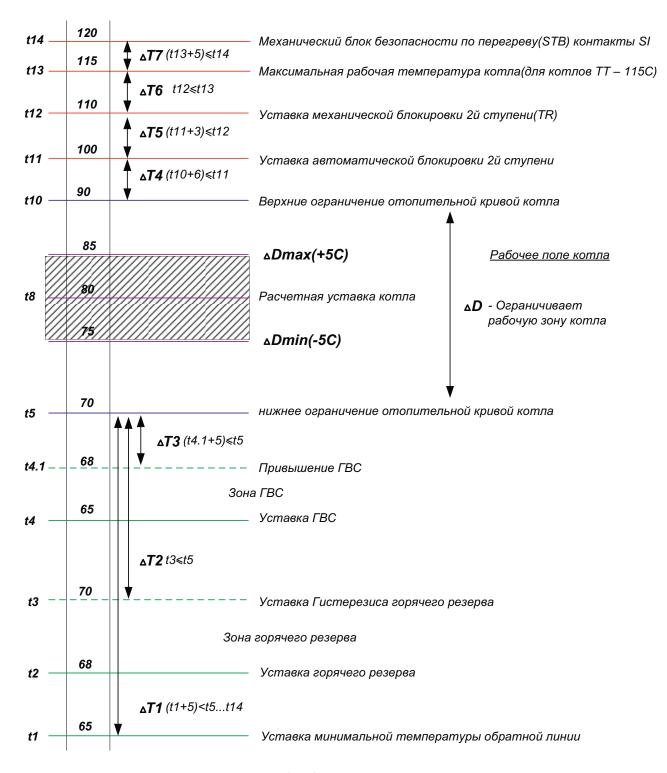
ВНИМАНИЕ!!!

Уставки невошедшие в список являются системными. Их изменение повлечет за собой выход из строя системы регулирования!!!


Пример 1

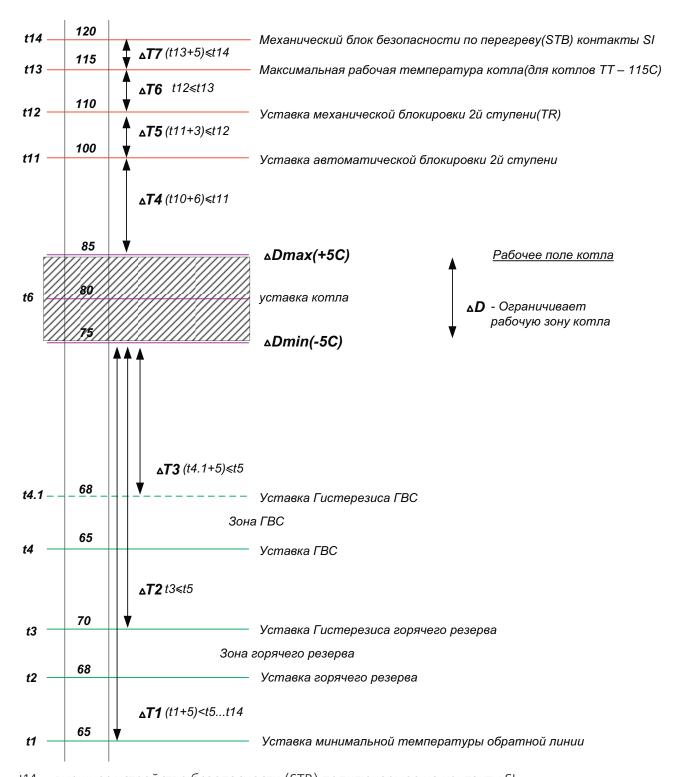
Исходные данные приведены на тепловой схеме

Порядок настройки


Примим то что начальные настройки установлены по умолчанию, система под давлением.

Шаг	Действия			
1	 1.1 Устанавливаем уставку минимальной температуры обратной линии (65) 1.2 Устанавливаем время выбега исполнительного механизма котла (шильда ИО) 1.3 Устанавливаем стратегию защиты котла по холодной обратной воде. Выбираем для данной схемы (2) 			
2	2.1 Устанавливаем уставку максимальной температуры отключения горелки (90)2.2 Выбираем тип горелки (модулируемая)			
3	3.1 Устанавливаем отопительную кривую по двум точкам 3.2 Ограничиваем отопительную кривую сверху и с низу			
4	4.1 Устанавливаем режим работы котла (одиночно)4.2 Выбираем способ задания уставки котла (кривая/уставка)4.3 Устанавливаем уставку превышения котла4.4 Устанавливаем уставку котла			
5	5.1 Устанавливаем уставки минимального и максимального давления котла5.2 При необходимости масштабируем датчик давления5.3 Включаем контроль деления (при необходимости и технической возможности)			
6	 6.1 Устанавливаем привышение над уставкой температуры обратной линии (п.1.1) для формирования уставки горячего резерва (мин.температура котла) 6.2 Устанавливаем гистерезис функции горячего резерва 6.3 Включаем функцию подержания горячего резерва 			
7	7.1 Устанавливаем уставку ГС 7.2 Устанавливаем гистерезис ГВС 7.3 Устанавливаем режим работы рециркуляционного насоса (постоянная/периодическая) 7.4 Если режим периодический то необходимо выставить кол-во включений насоса в час 7.5 Установить уставку привышения контура ГС над котловым контуром			
8	8.1 Устанавливаем уставку подпитки 8.2 Устанавливаем гистерезис подпитки 8.3 При необходимости масштабируем датчик			
9	9.1 Устанавливаем уставку, выбег ИО, привышение контура для модуля расширения 9.2 Устанавливаем работу по постоянной уставке			
10	10.1 Включаем подпитку 10.2 Включаем контур ГС 10.2 Включаем контур отопления			
11	11.1 Устанавливаем уставку блока безопасности			
12	12.1 Устанавливаем автоматический режим работы			
13	13.1 Проверка введенных уставок 13.2 Включаем котел 114 113 110.1 112 11.1 111 11.1 112 11.1 114 114			

Уставки (работа котла по температурной кривой)



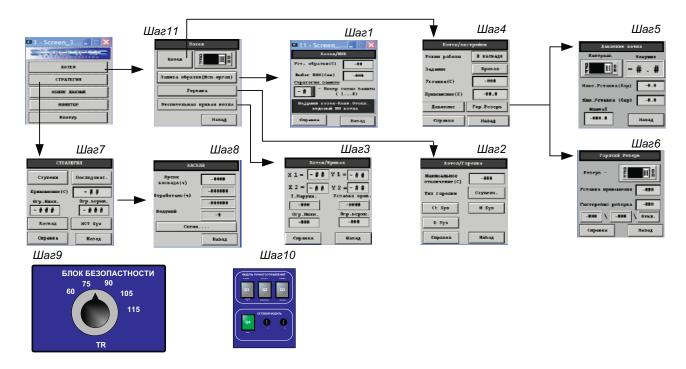
t14 = внешнее устройство безопасности (STB) подключаемое на контакты SI

t4.1 = уставка гвс+гистерезис+привышение контура

3HTPOPOC

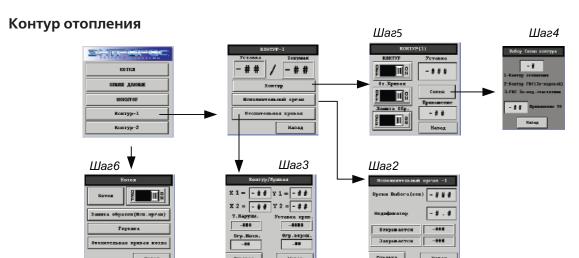
Уставки (работа котла постоянной уставке)

t14 = внешнее устройство безопасности (STB) подключаемое на контакты SI


t4.1 = уставка гвс+гистерезис+привышение контура

30UT2 M— 10UT1 1.Модуль 50.01 2.Модуль 50.02 3.Модуль 50.03 3IN3 Решение 2IN1 1PA 3IN1 20472 O-O-20-07 3047 XBC 1ТКО 1 IN 3vK 37KP 3TR MO-2VK 2PK 2TKP ZTR **≨** -**○**-**(X**O−1vK 1PK TT.

Пример 2 (модулируемые грелки)


SHTPOPOC

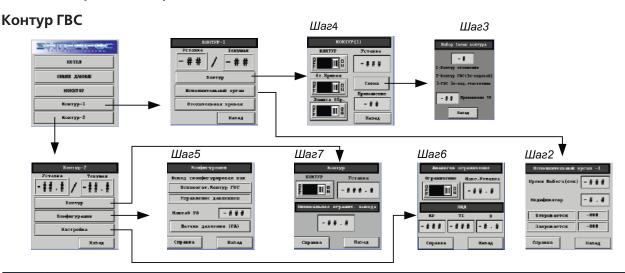
Порядок настройки 50.01

Шаг	Действия
1	1.1 Устанавливаем уставку минимальной температуры обратной линии(65) 1.2 Устанавливаем время выбега исполнительного механизма котла (шильда) 1.3 Устанавливаем стратегию защиты котла по холодной обратной воде. Выбираем для данной схемы (1)
2	2.1 Устанавливаем уставку максимальной температуры отключения горелки (90) 2.2 Выбираем тип горелки (модулируемая)
3	3.1 Устанавливаем отопительную кривую по двум точкам 3.2 Ограничиваем отопительную кривую сверху и с низу
4	4.1 Устанавливаем режим работы котла (в каскаде) 4.2 Выбираем способ задания уставки котла (уставка) 4.3 Устанавливаем уставку превышения котла 4.4 Устанавливаем уставку котла
5	5.1 Устанавливаем уставки минимального и максимального давления котла 5.2 При необходимости масштабируем датчик давления 5.3 Включаем контроль деления (при необходимости и технической возможности)
6	6.1 Устанавливаем привышение над уставкой температуры обратной линии (п.1.1) для формирования уставки горячего резерва (мин.температура котла) 6.2 Устанавливаем гистерезис функции горячего резерва 6.3 Включаем функцию подержания горячего резерва
7	7.1 Устанавливаем стратегическое привышение 7.2 Ограничиваем температуру стратегии сверху и с низу 7.3 Устанавливаем тип управления (Последовательно) 7.4 Устанавливаем тип горелок (модулируемая)
8	8.1 Устанавливаем время работы каскада (300 часов)
9	9.1 Устанавливаем уставку блока безопасности
10	110.1 Устанавливаем автоматический режим работы
11	11.1 Проверка введенных уставок 11.2 Включаем котел

Порядок настройки 50.02

Шаг	Действия
1	1.1 Произвести настройку котла как и для 50.01 п.1-п.6, п.9-п.11
2	2.1 Устанавливаем время выбега исполнительного механизма контура отопления (шильда) 2.2 Устанавливаем модификатор (1)
3	3.1 Устанавливаем отопительную кривую по двум точкам 3.2 Ограничиваем отопительную кривую сверху и с низу
4	4.1 Выбираем схему работы контура (1) в этом случее привышение вводить не требуется
5	5.1 Устанавливаем уставку контура отопления 5.2 Устанавливаем уставку привышения контура отоплени(для формирования уставки котла) 5.3 Включаем функцию защиты котла исполнительным органом котлового контура 5.4 Выбираем способ задания уставки (постоянная/по кривой) 5.5 Включаем контур

Эффект качения


При первом включении котловой установки(на холодном контуре отопления) с защитой котлов по холодной обратной воде с помощью исполнительного органа контура отопления (ИОКО) как правило наблюдается эффект качения системы. Характеризуется следующим:

- 1. При включении котлов ИОКО закрыт так как защищает котлы от холодной обратки
- 2. При превышении уставки по защите котлов ИОКО начинает открываться тем самым понижая температуру в котле и опять вынуждая ИОКО закрыться. При таком режиме прогрев контура может занять долгое время.

85

ЭНТРОРОС

Порядок настройки 50.03

Шаг	Действия
1	1.1 Произвести настройку котла как и для 50.01 п.1-п.6, п.9-п.11
2	2.1 Устанавливаем время выбега исполнительного механизма контура отопления (шильда) 2.2 Устанавливаем модификатор (1)
3	3.1 Выбираем схему работы контура (3) 3.2 Устанавливаем превышение на теплообменнике(3)
4	4.1 Устанавливать уставку не требуется так как она будет формироваться как уставка контура2 + привышениенаТО 4.2 Выключаем работу по отопительной кривой 4.3 Выключаем функцию защиты обратки котла 4.4 Устанавливаем превышение контура 4.5 Включаем контур
5	5.1 Устанавливаем задание контура (По датчику температуры)
6	6.1 Устанавливаем уставку ограничения (75) 6.2 Включаем функцию ограничения 6.3 Вводим настройки ПИД регулятора (принимаем по умолчанию)
7	7.1 Устанавливаем уставку контура ГВС (65) 7.2 Устанавливаем уставку минимального аналогового ограничения (30) 7.3 Включаем контур

Рекомендации

Привышение на ТО (п.3.2) зависит от падения температуры на теплообменнике (теплопередача) т.е. при понижении перепада давления на теплообменнике (уменьшение теплопередачи) данную уставку необходимо увеличить.

Минимальное аналоговое ограничение так как контур 2 управляет насосом с частотным регулированием то необходимо установить уставку таким образом чтобы нулевое задание

соответствовало минимально допустимой частоте для данного типа насоса. Увеличить минимальное ограничение необходимо в случее:

- перепада на насосе работающего на минимальной частоте недостаточно для преодоление сопротивления на теплообменнике.
- увеличился перепад давления на теплообменнике

ВНИМАНИЕ!!!

Для нормальной работы контура ГВС насос загрузки ГВС должен работать постоянно (изменяется только частота), насос рециркуляции работает постоянно.

Комплексная проверка (предпусковая)

С целью профилактики возможных нештатных ситуаций и обеспечения нормальной работы установки перед запус-ком (на тех. обслуживании) необходимо произвести следующие работы по проверке:

Датчики

- наличие (согласно тепломеханической схеме)
- правельность установки (согласно тепломеханической схеме)
- длину (в ламинарном потоке)
- правильность подключения (согласно схеме)
- наличие мер препятствующим выпадению датчика из гильзы
- наличие в месте установки датчика (гильза) теплопередающих материалов (паста, масло и т.д.)

Примечание

Проверять правильность подключения датчика следует путем нагрева его сторонним нагревательным прибором и фиксирование изменение температуры на операторской панели (меню — Тест аналоговых входов) в соответствующим этому датчику окне.

Технологическое оборудование (насосы, исполнительные оргоны, клапаны)

- наличие (согласно тепломеханической схеме)
- правильность установки (согласно тепломеханической схеме для насосов направление вращение, для клапанов положение)
- правильность подключения (согласно схеме)

Примечание

Проверять правильность подключения оборудования следует путем включения/ выключения насосов, клапанов, сигналов на открытие/закрытие с операторской панели меню "Тест Реле".

ВНИМАНИЕ!!!

При невыполнении или отсутствии одного из требований проверки эксплуатация котловой установки запрещена!

Ситуации указывающие на необходимость провести комплексную проверку

- котел перегревается (STB)
- котел отключается (TR, макс.ограничение)
- Котел(веущий/ведомый) не держит уставку
- Котел (веущий/ведомый) не держит уставку
- Контур отопления не держит уставку
- Контур ГВС не держит уставку
- Избыточное включение котлов в каскад
- Неостаточное включение котлов в каскад

Нештатная ситуация контура

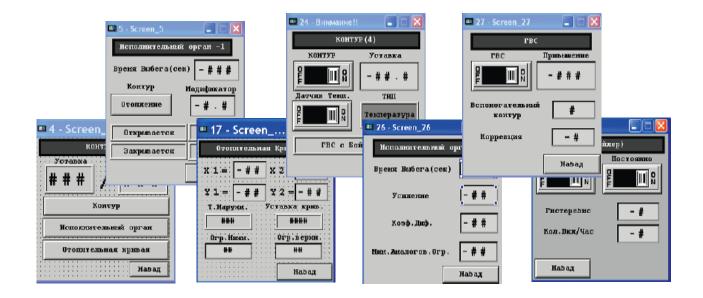
Ситуации рассмотрены при условии отсутствия аварий в журнале, проведенной комплексной проверки и прогретого контура

Контур отопления не держит уставку

Причина	Устранение
Мала разность межу текущей уставкой котла и уставкой контура	Увеличить уставку превышения контура отопления
Исполнительный орган контура отопления защищает Котлы от холодной обратки (если функция включена)	1. Увеличить разность между уставками контура и уставкой защиты от хол.обратки 2. Увеличить разность между уставками контура и уставкой защиты от хол.обратки 3. Отключить функцию защиты
Неправильно введено время выбега исполнительного органа контура отопления	Сверить установленное значение со значением на шильде устройства
Контур Подвержен инерции	Необходимо каждые 3-й периода увеличивать модификатор с шагом 0,1 если амплитуа колебаний температуры возрастает то слеует Вернутся к1 и начать уменьшение модификатора кажые 3-й периода на 0,1. Выбрать самый оптимальный режим.

Контур ГВС не держит уставку

Причина	Устранение
Мала разность межу текущей уставкой котла и уставкой контура 2 + привышение на ТО	Увеличить уставку превышения контура
Исполнительный орган контура 1 отопления защищает Котлы от холодной обратки или работает по отопительной кривой	1. Отключить отопительную кривую 2. Отключить функцию защиты
Неправильно введено время выбега исполнительного органа контура1	Сверить установленное значение со значением на шильде устройства
Контур Подвержен инерции	Необходимо каждые 3-й периода увеличивать модификатор с шагом 0,1 если амплитуа колебаний температуры возрастает то слеует Вернутся к1 и начать уменьшение модификатора каждые 3-й периода на 0,1. Выбрать самый оптимальный режим.
Неверные настройки ПИД регулятора контура 2	Необходимо скорректировать настройки ПИД регулятора
Изменились характеристики теплообменника	1. Увеличить/уменьшить превышение на ТО в зависимости от состояния теплообменника 2. Увеличить минимальное аналоговое ограничение
Недостаточный минимальный расхо через теплообменник	Увеличить минимальное аналоговое ограничение с Шагом 10 кажые 5 минут


МОДУЛЬ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ КОНТУРАМИ 50.05, 50.07

ГЛАВА 3

МОДУЛЬ 50.05, 50.07

Рассмотренные вопросы:

- Общие настройки
- Настройка контуров общего назначения
- заводские установки

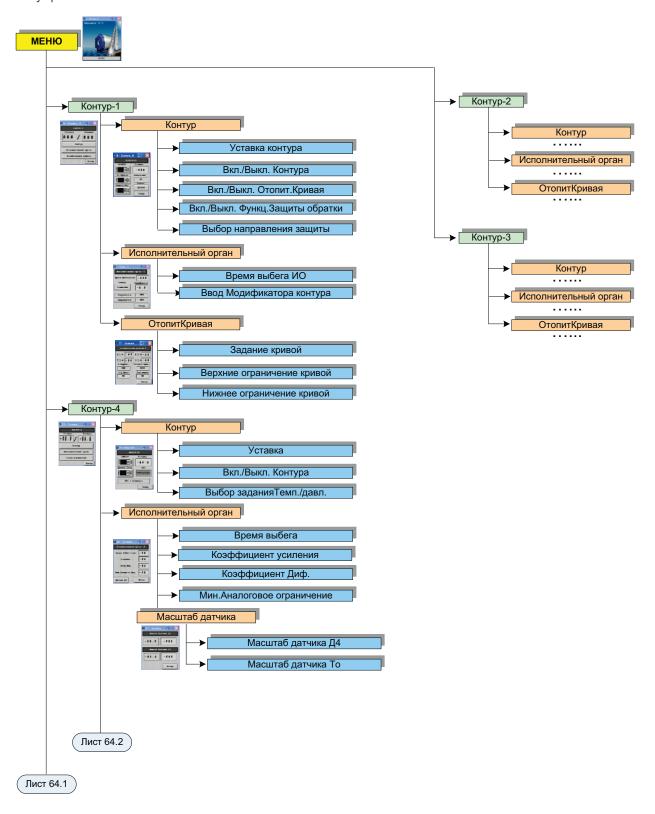
Операторская панель

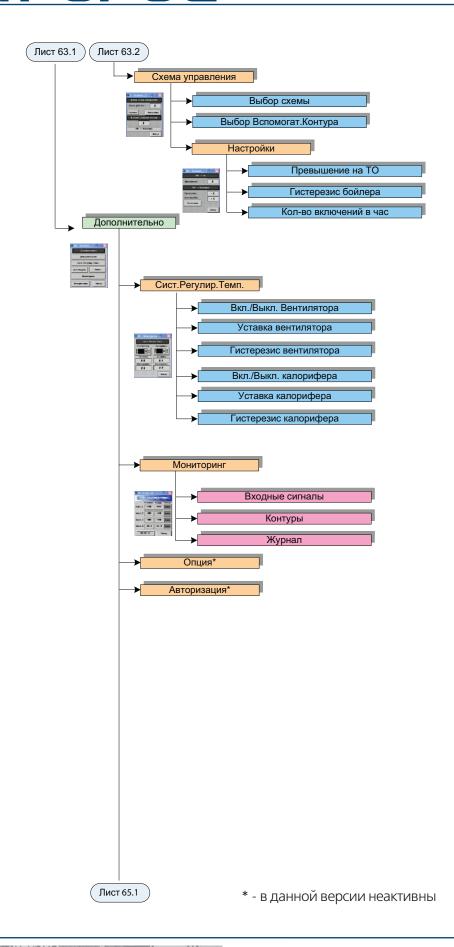
Операторская панель представляет собой пульт для управления пользовательским оборудованием, используя человеко-машинный интерфейс.

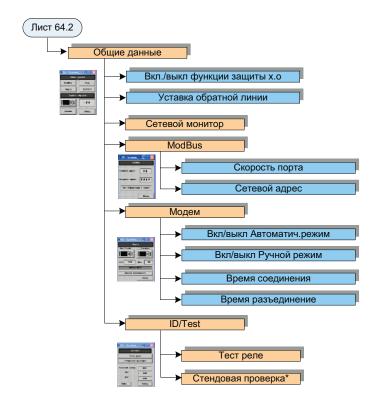
Внешний вид панели:

Пульт имеет степень защиты IP-65 (для лицевой панели), дисплей размером 240х240 пикселей 16 оттенков черного (сенсорный экран) сенсорный экран).

Индикация:


COM1 — Мигание индикатора указывает на процессы чтения и записи оперативных данных


– Наличие питание панели.


Функциональный алгоритм интерфейса

Ниже приведен типовой алгоритм дерева окон управления.

SHTPOPOC

Примечание

В зависимости от версии программного обеспечения некоторые пункты могут быть изменены или добавлены, однако структура и принципы навигации остаются неизменными.

* - в данной версии неактивны

SHTPOPOC

Для перехода между окнами или для ввода уставки необходимо однократно нажать пальцем (указкой) на элемент управления изображенный на экране панели.

Принципы управления

Энтроматик 50.05 (50.07) управляет 4-я явликонтурами (Рис.1). Настройка контуров 1-3 раг

является одинаковой, в данном описании рассмотрена настройка Контура 1 и контура 4.

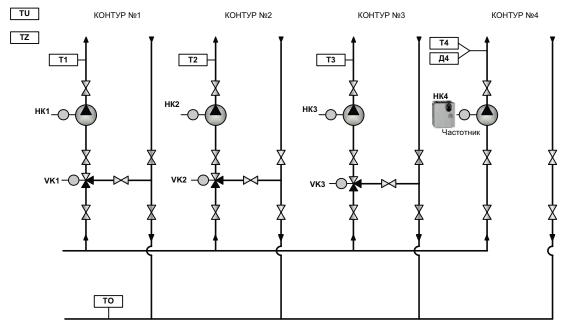
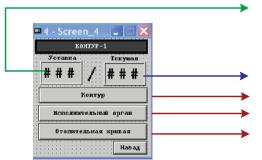


Рисунок 1. Тепловое решение Энтроматик 51.01 (51.03).

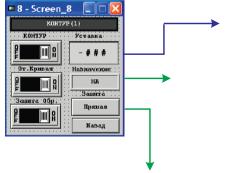


В качестве исходных данных для управления насоса контура НК1, а также исполнительного механизма VK1 принимаются:

- 1. Наружная температура **TU** (если необходимо установить зависимость между температурой теплоносителя и наружной температурой)
- 2. Текущая температура теплоносителя **Т1** (обратная связь)
- 3. Температура обратной линии **то** (для дополнительной защиты котельной установки от холодной обратной воды)
- 4. Постоянная уставка температуры контура SP (задается в ручную)

Настройка Контуров 1-3

Отображается уставка контура SP введенное оператором либо вычисленное значение уставки в соответствии с заданной температурной кривой(если такая функция включена)


Текущая температура теплоносителя **Т1**

Переход к заданиям параметров контура

Переход к настройкам исполнительного органа

Переход к настройкам отопительной кривой

Меню контур

Ввод постоянной уставки температуры теплоносителя SP

Информационные окна

Указывает на конфигурацию контура

НА – неопределенно

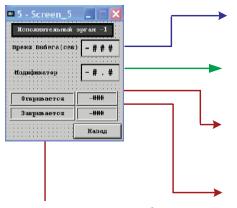
Отопление — Контур является отопительным

ГВС(ТО) – Контур является вспомогательным контуром ГВС и регулирует температуру теплоносителя до теплообменника

ГВС(Бойлер) — Контур является вспомогательным контуром ГВС и управляет насосом рециркуляции

Прямая — При понижении температуры ниже уставки температуры обратки исполнительный орган контура будет закрыватся

Обратная – При повышении температуры выше уставки температуры обратки исполнительный орган контура будет закрываться


Указывает на Способ защиты обратной линии

КОНТУР - Вкл./Выкл. Контура-1

От. кривая — Вкл./Выкл. задание уставки в соответствии с отопительной кривой

Защита обр. – Вкл./Выкл. Функции защиты от холодной обратной воды исполнительным отгоном контура. (см.Лист 00)

Меню Исполнительный контур

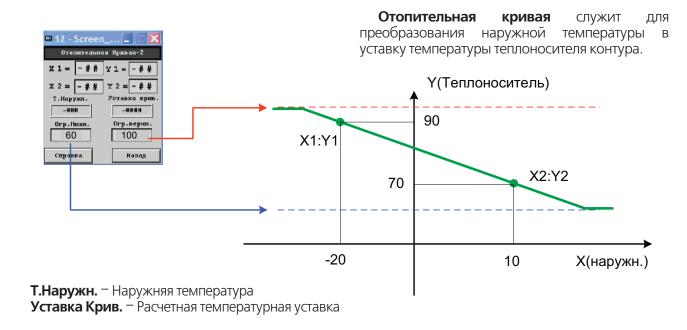
Информационные окна отображающие действия исполнительного органа контура 1 (открывается/закрывается)

Ввод времени выбега исполнительного механизма контура 1 (указывается заводом изготовителем)

Модификатор системы

Отображается уставка контура SP введенное оператором либо вычисленное значение уставки в соответствии с заданной температурной кривой (если такая функция включена)

Текущая температура теплоносителя Т1

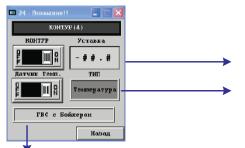

95

ЭНТРОРОС

Модификатор – является поправочным коэффициентом для более точной настройки системы управления влияет на скорость

отклика системы при изменение входного сигнала (температуры). Нормальное значение 1. Рекомендуется изменять в приделах от 0,4 до 2.

Отопительная кривая


Настройка Контура 4

В качестве исходных данных для фор- либо давление (определяется поставленными мирования сигнала управления 4-20мА: задачами). принимается на выбор либо температура

Контур

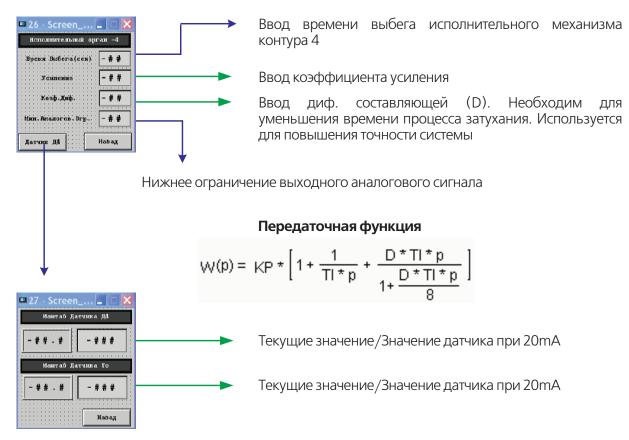
Ввод постоянной уставки **SP**

Инф. окно указывает какой входной канал открыт для обратной связи температура/давление

КОНТУР - Вкл./Выкл. Контура-4

Датчик Темп. – Вкл./Выкл. Открытие входного канала обратной связи по температуре(в противном случае по давлению)

Инф. окно указывает на текущую конфигурацию контура. Возможные конфигурации:


НА – контур не определен

Аналогов. управление – контур имеет конфигурацию по управлению сторонней системой по средствам аналогового сигнала 4-20mA

ГВС с Теплообменником – контур имеет конфигурацию по управлению системой гвс по схеме с теплообменником

ГВС с Бойлером — контур имеет конфигурацию по управлению системой гвс по схеме с бойлером

Настройка исполнительного органа контура 4

97

ЭНТРОРОС

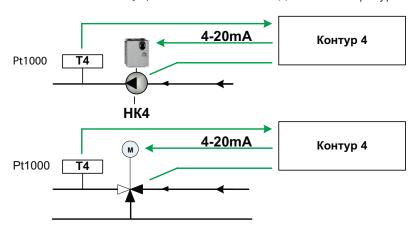
Схема управления

Контур 4 является универсальным и может работать по 5-и схемам управления.

Выбор схемы управления – В данном разделе осуществляется выбор схемы управления контура а также производятся его настройки. По кнопке "Справка" осуществляется переход в информационное окно с описанием схем управления.

Вспомогательный контур (ВК) необходим при выборе схем ГВС, он назначается из свободных 3х контуров. Которые будут работать по выбранной схеме, т.е. при схеме ГВС с ТО вспомогательный контур должен управлять температурой до ТО и насосом рециркуляции, при выборе схемы ГВС с Бойлером вспомогательный контур управляет только насосом рециркуляции.

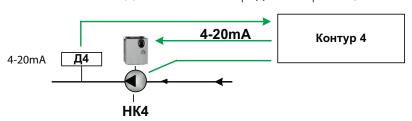
Если контур выбран как ВК, то его нельзя больше задействовать под другие схемы. Уста-вка вспомогательного контура формируется и задается автоматически при настройке Контура-4. На

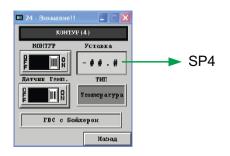

ВК нельзя включить функцию Защиты по холодной обратной линии. Для нормальной работы ВК необходимо включить и задать время выбега его исполнительного органа.

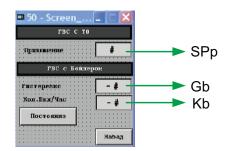
Схемы управления

1. Аналоговое управление по датчику Т4

При этом контур 4 управляет насосом (Вкл./Выкл.) и выдает аналоговый сигнал управления

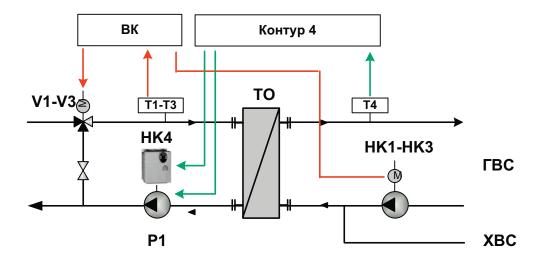

4-20mA по ПИД закону. Датчиком обратной связи является датчик температуры Т4.




2. Аналоговое управление по датчику Д4

При этом контур 4 управляет насосом (Вкл./ Выкл.) и выдает аналоговый сигнал управления 4-20mA по ПИД закону. Датчиком обратной связи является аналоговый датчик Д4 4-20mA.

Так как датчик Д4 может являться как датчиком температурным так и давления то нормальной работы необходимо указать его тип (См. лист 00) и придел измерения (См. лист 00).


3. ГВС с Теплообменником

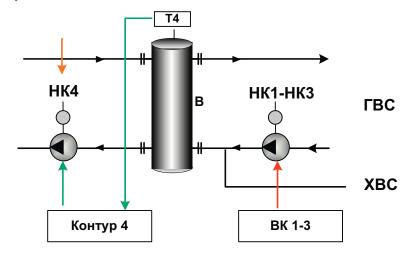
Для работы схемы необходимо ввести следующие данные:

- Уставку контура SP4
- Превышение на TO SPp
- Выбрать вспомогательный контур
- Ввести настройки ПИД регулятора для аналогового выхода
- Установить мин.аналоговое ограничение (для обеспечение расхода через ТО при минимальном задании)

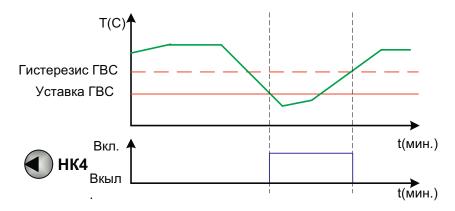
3х-ходовой клапан (V) вспомогательного контура осуществляет регулирование температуры до ТО по датчику Т1-Т3, уставка для исполнительного органа V определяется как SP(1-3)=SP4+SPp

Насос Р1 оснащен частотным регулированием, для задание частоты используется уставка SP и датчик T4 он осуществляет регулирование температуры после TO.

4. ГВС с Бойлером

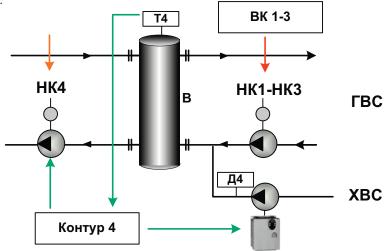

Для работы схемы необходимо ввести следующие данные:

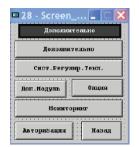
- Уставку контура SP4
- Уставку гистерезиса Gb


- Выбрать режим работы насоса рециркуляции:постоянно либо в автоматическом режиме при котором включение будет осуществляться определенное кол-во раз в час (Кb)
- Выбрать вспомогательный контур (управление рециркуляцией)

3HTPOPOC

Схема ГВС с Бойлером


Принцип работы Схемы ГВС с Бойлером


5. ГВС с Бойлером + Ан. управление по датчику Д4

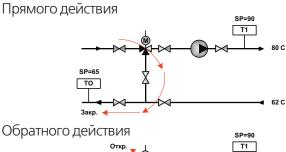
Данная схема объединяет в себе схему 2 и 4.

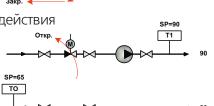
Для работы схемы необходимо ввести данные для схемы 2 и схемы 4.

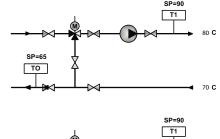
Дополнительные функции

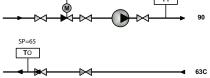
Дополнительные функции

Инф. окно указывает какой входной канал открыт для обратной связи температура/давление

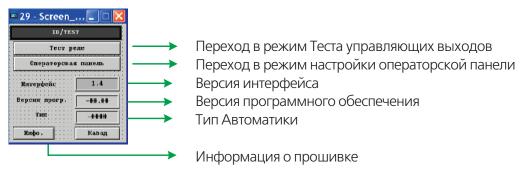

Общие данные




В разделе Общих данных производится переход к функциям мониторинга сети, тестирования входов/выходов, настройки управления питанием внешнего модема, параметры ModBus и включения функции защиты от холодной температуры обратной линии.


Вкл./выкл. Функции Защиты обратки Уставка функции Масштабирование аналогового датчика ТО.

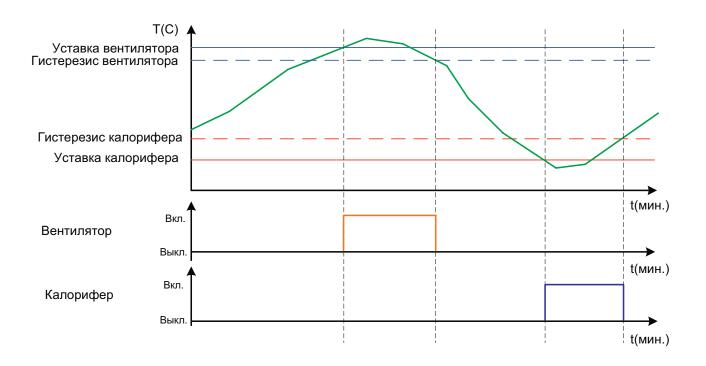
Функция устанавливает приоритет уставки обратной линии выше чем уставка контура.



ID/Tect

SHTPOPOC

Система регулирования температуры


Система регулирования температуры служит для поддержания температуры теплопункта в заданных параметрах **SP**

Вентилятор вкл./выкл. вентилятора

Калорифер вкл./выкл. калорифера

В качестве исходных данных для формирования сигнала управления вентилятором и калорифером является температура **TZ** помещения и соответствующе заданные уставки температуры и гистерезиса **SP**.

Мониторинг

Информационное окно отображает состояние и статус контуров регулирования. Информация выводится в формате.

Уставка/Текущая температура/Статус контура

На экране отображаются значения всех аналоговых входных сигналов. Рядом скаждым значением располагается информационное окно которое сигнализирует о необходимости подключения датчика в зависимости от выбранной конфигурации.

Датчик	Условия работы	Действия при отсутствии или обрыве датчика при соблюдении условий работы
T1 (обратная связь контур-1)	Вкл. Контур-1	Контур -1 отключается выводится сообщения в журнал аварий
T2 (обратная связь контур-2)	Вкл. Контур-2	Контур -2 отключается выводится сообщения в журнал аварий
ТЗ (обратная связь контур-З)	Вкл. Контур-3	Контур -3 отключается выводится сообщения в журнал аварий
Т4 (обратная связь контур-4)	Вкл. Контур-4 и выбор датчика Температуры	Контур -4 отключается выводится сообщения в журнал аварий
D4 (обратная связь контур-4)	Вкл. Контур-4 и выбор датчика Давления	Контур -4 отключается выводится сообщения в журнал аварий
Tv (темп. помещения)	Вкл. вентилятора или калорифера	Прекращается регулирование темп. в помещении, выводится сообщения в журнал аварий
Ти(темп.наружн.)	Использование темп. кривой	Прекращается регулирование по темп.кривой, контур работает по последнему полученному значению выводится сообщения в журнал аварий
То(темп.обратной линии)	Вкл. функции защиты по обратке	Функция отключается

103

DHTPOPOC

Тест реле

Меню Тест-Реле находится по адресу: Основное меню / Дополнительно / Общие данные / ID-Test / Test реле. Вход в меню разрешен только специалистам.

Для принудительного управления Выходами необходимо перевести проверяемый выход в ручной режим.

Аналоговые выходы

Таблица 2

Элемент	Событие	Значение
Ап 1	Ввод	Аналоговый выход 1 4-20мА
Ап 2	Ввод	Аналоговый выход 2 4-20мА

Дискретные выходы

Таблица 3

Элемент	Событие	3начение
1	БV	Исп.Орган Контур-1 (открытие)
2	MV	Исп.Орган Контур-1 (закрытие)
3	БV	Исп.Орган Контур-2 (открытие)
4	MV	Исп.Орган Контур-2 (закрытие)
5	БV	Исп.Орган Контур-3 (открытие)
6	MV	Исп.Орган Контур-3 (закрытие)
7	BV	Вентилятор вкл.
8	KV	Калорифер вкл.

Функция предназначена для облегчения пусконаладочных работ (проверка исполнительных органов контура).

Дискретные входы

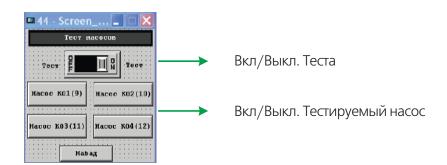
Таблица 1

Элемент	Событие	Значение		
1 🔲	1 🗸	Наличие сигнала (38-42)		
2 🔲	2 V	Наличие сигнала (39-42)		
3 🔲	3 V	Наличие сигнала (40-42)		
4 🔲	4 V	Наличие сигнала (41-42)		

ВНИМАНИЕ!!!

После окончания проверки установить все выходы в автоматический режим.

Параметры Макс. и Мин. Ограничивают выходной сигнал


Значение 0 соответствует 4 мА значение 100 — 20 мА

Элемент – изображение в неактивном виде

Событие — изображение в активном виде (после нажатия)

Значение – действие по событию

Тест Насосов

Используемые сокращения

Т – Температура

ТО – Теплообменник

ТП – Тепловой пункт

Макс. – Максимальное значение

Мин. – Минимальное значение

Зап. – Заполнение

Вкл. – Включено

Выкл. - Выключено

ХВС – Холодное водоснабжение

ГВС – Горячее водоснабжение

Гист. – Гистерезис

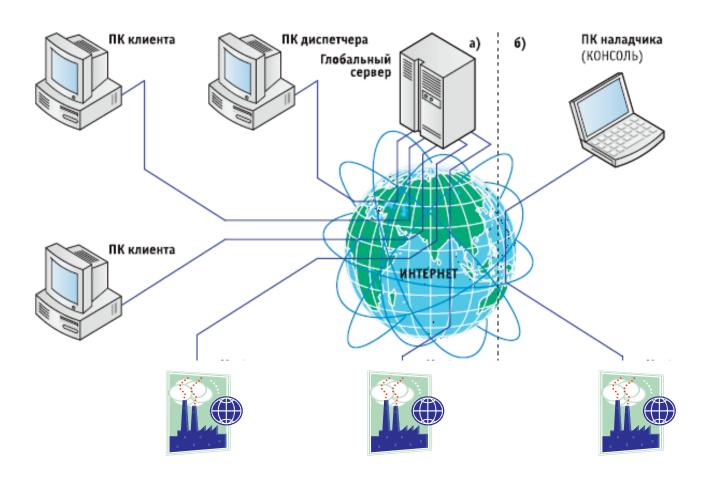
Обр. – Обратный трубопровод

Давл. – Давление

ПС – Повысительная станция

DHTPOPOC

Заводские Уставки


Разбел	Уставка	Макс.	Мин.	Уставка
Настройка системы Вентиляции	3	10	1	Гистерезис Калорифера
	3	10	1	Гистерезис Вентилятора
	Выкл			Вкл/Выкл Калорифер
	10	30	5	Уставка Калорифера
	24	50	20	Уставка Вентилятора
	Выкл			Вкл/Выкл Вентилятор
	Выкл			Контур
	1	1	10	Модификатор контура
	Выкл			Отопительная кривая
	100	115	15	Макс. ограничение кривой
	60	115	15	Мин. ограничение кривой
	Отопление			Тип
K 1.2.2	70	115	15	Уставка контура
Контур 1, 2, 3	-26	40	-40	Отопительная кривая Х1
	10			Отопительная кпибая Х2
	95	115	15	Отопительная кривая Ү1
	40	115	15	Отопительная кривая Ү2
	120	600	0	Время выбеа исполнит. механизма
	Выкл			Функция защиты контура
	25	100	0	Аналоовое ораничение
	Вкл			Постоянная работа нас. рециркуляции
	3	10	1	Гистерезис ГВС с бойлером
	3	6	1	Кол-во вкл.в час нас. рециркул.ГВС
	Выкл			Схема ГВС с бойлером
	Выкл			Контур
	HA			Схема
Various A	0	100	0	Диф. составляющая
Контур 4	Выкл			ГВС
	8	100	0	Усиление
	3	20	0	Превышение
	60	115	0	Уставка
	0	10	0	Коррекция Уставки
	Темп.			Выбор датчика
	12	100	0	Время выбеа исполнит. механизма

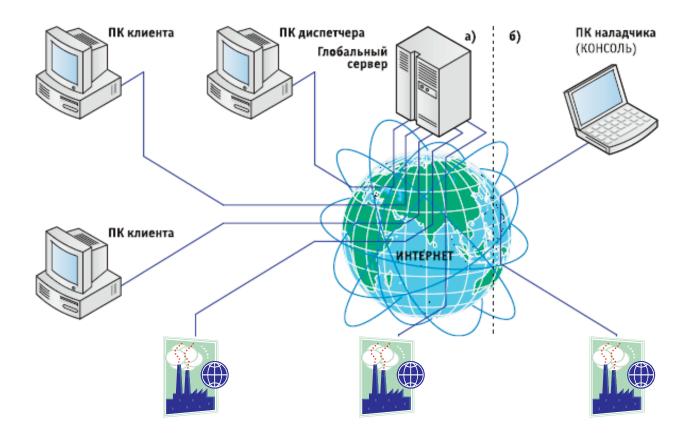
СИСТЕМА ДИСПЕТЧЕРИЗАЦИИ

ГЛАВА 4

Рассмотренные вопросы:

- Общие сведения
- Построение системы диспетчеризации
- Настройка диспетчерских модулей
- Внешние подключения
- Таблица тэгов
- Адресация ModBus

SHTPOPOC


Диспетчеризация

Комплекс Автоматики для управления теплопунктом Энтроматик 50 – система управления, основанная на Интернете.

Суть управления сводится к следующему. Модули, установленные на территориально рассредоточенных объектах, посылают информацию о работе объекта на сервер, где эта информациянужнымобразомобрабатывается и, при необходимости, архивируется.

Поскольку для передачи информации используется глобальная сеть Интернет, то расстояние между объектом и сервером роли не играет. В то же время пользователь

(владелец объекта, инженер, отвечающий за его работу ит.д.) с соответствующими правами доступа, обратившись к серверу, получает информацию о работе объекта в удобной для себя форме (мнемосхема, графики отчеты и т.п.). Никаких специальных программ на компьютере пользователя устанавливать не требуется, достаточно любого Интернет браузера. Такое построение системы, когда для получения информации о работе объекта используется "посредник" — глобальный сервер, становится особенно удобной, когда одному пользователю требуется получить информацию о многих объектах, и он при этом не привязан конкретному рабочему месту (доступ из любой точки мира).

В наиболее общем случае клиент серверная архитектура поддерживается глобальным центральным сервером, на котором установлено программное обеспечение, осуществляющее информационный обмен со всеми контроллерами, подключенными к сети Интернет через субмодули WebLinker, входящие в состав модуля 50.01. Доступ к этому глобальному серверу осуществляется с любого клиентского компьютера, подключенного к Интернету.

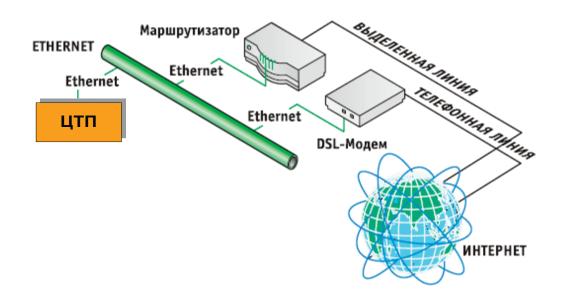
Модуль 50.01 может одновременно обмениваться информацией с несколькими серверами (до 3).

Так как модуль имеет непосредственный выход в Интернет, то отпадает необходимость в отдельном компьютере на каждом объекте, что приводит к существенному удешевлению системы и повышению ее надежности.

Весь обмен между Модулем 50.01 и (сервером) компьютером ПО каналам Интернет ведется зашифрованным 64 битным ключом, что исключает несанкционированное вмешательство в работу объекта. В качестве дополнительной защиты в модуле 50.01 предусмотрен встроенный Firewall. Так как Интернет трафик зачастую является платным, то в системе приняты эффективные меры для его снижения. Достигается это следующим способом. После инсталляции модуля на объекте он начинает посылать на сервер с заданным (достаточно большим) интервалом времени небольшие пакеты со своими реквизитами.

Основная цель этих пакетов, называемых "сердцебиением" оповестить сервер о своем состоянии. После получения первого же пакета сервер считывает со всех модулей сети описательную информацию и сохраняет ее в своей базе данных. В пакетах сердцебиения кроме реквизитов Master модуля 50.01 (серийный номер время и т.д.) содержится битовая карта тревог (алармов) объекта. При необходимости получить более детальную информацию сервер открывает так называемую сессию, в течение которой модуль начинает посылать на сервер пакеты расширенной информации. Пакеты сессии посылаются с интервалом и в течение времени, заданных командой с сервера. По истечении заданного времени сессия автоматически закрывается. При необходимости сессия может быть закрыта принудительно.

Пакеты сессии, равно как и сердцебиения, могут посылаться с данного модуля не более чем на три сервера.

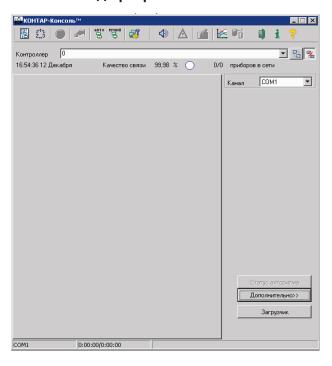

ПРОВОДНЫЕ СПОСОБЫ СВЯЗИ МЕЖДУ КОНТРОЛЛЕРАМИ И ДРУГИМ ОБОРУДОВАНИЕМ

Контроллер-СПТ. Соединение осуществляется между соответствующими клеммами контроллера и контактами периферийных устройств. Для подключения приборов учета используется интерфейс RS232C.

3HTPOPOC

Выход в Интернет может быть обеспечен через локальную сеть с помощью маршрутизатора (или сервера) по выделенной линии, либо с помощью DSL-модема по телефонной линии.

Пример подключения сети контроллеров к Интернету


Другой вариант выхода в Интернет это использование сотовых сетей мобильной связи стандартов GSM и CDMA. Для этого используется GPRS и CDMA модемы, которые подключаются к Master-контроллеру через модуль WebLinker Modem или **WebLinker EM**. В последнем случае пользователь, применяя программу КОНСОЛЬ, может установить желаемый вид подключения к сети ИНТЕРНЕТ.

Для обеспечения максимальной надёжности соединения возможно **резервирование** каналов связи путём одновременного подключения к модулю WebLinker EM канала Ethernet и сотового модема. Программа WebLinker тестирует качество связи и автоматически переключает вид соединения.

Консоль

Hастройка WebLinker осуществляется с помощью программы Консоль.

Внешний вид программы Консоль

Примечание:

«Сердцебиения» — информационные пакеты, содержащие серийный номер Master-контроллера, его системное время и битовую карту отказов. Основное предназначение таких пакетов — сообщать серверу о своей работоспособности и о состоянии сети в целом. Пакеты сессии представляют собой двоичный дамп значений параметров заранее определенных пользователем при составлении алгоритмического проекта.

Общие сведения

С Master-модулем 50.01 предусмотрена связь через сеть Интернет или локальную сеть (LAN). Для обеспечения такой связи Master-модуль имеет дополнительный интерфейс Ethernet который должен быть настроен должным образом: иметь соответствующие сетевые настройки.

Обмен данными

Обмен данными между компьютером и модулями, подключеннымипоканалу Ethernet, ведется по TCP-протоколу с использованием криптографического алгоритма с 64-битным ключом.

Для того чтобы расшифровать эти данные, сервер должен предварительно считать определенную информацию из контроллеров даннойсети. Пакеты «сердцебиения» выдаются контроллером с 5-минутным интервалом, пакеты сессии — по команде с сервера.

Настройка

Для изменения сетевых настроек, нажмите на кнопку (Сетевые настройки) на панели инструментов. При этом соединяться с Masterмодулем не обязательно. Для подключения будет использован выбранный канал связи (СОМ или Ethernet).

Подключение по каналу COM используется в следующих случаях:

- когда сетевые настройки устанавливаются в первый раз;
- требуется определить текущий IP-адрес контроллера;
- в сетевых настройках включена функция FireWall, а подключение ведется с компьютера, IP-адрес которого не включен в список разрешенных;
- запрещено использование канала Ethernet.

Доступ к сетевым настройкам может быть защищен паролем администратора.


Настройка

Контроллер может обмениваться информацией не более чем с тремя серверами. Для каждого сервера задается его IP-адрес и номер программного порта на который отправляются пакеты.

В разделе **Настройка сервера** установите флажок и задайте IP-адрес, программный порт

и интервал пакетов для каждого сервера. Если серверов меньше трех, то для отсутствующего сервера флажок должен быть снят.

Установите флажок **FireWall**, если хотите предоставить доступ к контроллеру только с серверов и определенных компьютеров (не больше двух) и задайте их IP-адреса в появившемся разделе **Дополнительные сервера.**

Контроллер должен иметь свой IP-адрес. Дополнительно необходимо указать маску подсети и шлюз. Данные параметры могут быть фиксированными или назначаться автоматически сервером сети (если поддерживается функция DHCP).

В разделе **Настройки контроллера** установите флажок **DHCP** для автоматического определения IP-адреса контроллера, маски подсети и шлюза или введите фиксированные значения в соответствующих полях.

Если для подключения был использован канал Ethernet и были изменены сетевые настройки контроллера (например, IPадрес), то после нажатия на кнопку **Да** или **Применить**, связь с сетью контроллеров может быть прервана.

Если для подключения был использован канал COM, то будут доступны следующие опции:

• **Разрешить Ethernet.** Установка данного флажка разрешает использование канала Ethernet для подключения к сети контроллеров. В противном случае такое подключение невозможно.

При необходимости задайте (или измените) пароли пользователя и администратора. Если поля паролей оставить пустыми,

то в контроллер будет прописан пароль по умолчанию. Любой пароль можно изменить в любой момент времени.

- Пароль пользователя предоставляет возможность подключаться к сети приборов только просмотра.
- Пароль администратора предоставляет полный доступ к сети приборов (изменение параметров, загрузка файлов, изменение планировщика, ручное управление выходами прибора, доступ к сетевым настройкам, настройка модема и встроенного пульта, возможность очистки внутреннего архива, добавление параметров к сессии).

Кнопка Новый шифровальный ключ предназначена для записи в контроллер так называемого мастер-ключа, который генерируется случайным образом. Одновременно на диске записывается специальный файл с расширением КЕҮ и именем, равным серийному номеру контроллера, который необходимо любым доступным способом службам, обслуживающим доставить серверы, с которыми контроллер будет вести обмен. Этот файл должен быть недоступным для посторонних. Описанная процедура проводится редко, обычно при установке контроллеров на объекте.

Просмотр произведенных подключений

Чтобы просмотреть совершенные ранее подключения к сети приборов, нажмите кнопку **Журнал подключений**.

#	Время	ІР-адрес	Из порта	В порт	
67	17.08.05 - 15:02:50	172.16.4.127	1905	26482	
66	17.08.05 - 14:52:51	172.16.4.127	1890	26482	
65	17.08.05 - 14:49:11	172.16.4.127	1867	26482	
64	17.08.05 - 14:47:22	172.16.4.127	1862	26482	
63	17.08.05 - 14:44:23	172.16.4.127	1852	26482	
62	17.08.05 - 14:01:41	172.16.4.127	1780	26482	
61	17.08.05 - 13:54:25	172.16.4.127	1766	26482	

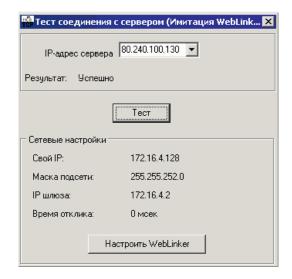
Проверка связи с сервером

При установке контроллеров на объекте программа КОНСОЛЬ позволяет проверить связь с сервером по каналу Ethernet.

Подключите компьютер к каналу Ethernet вместо контроллера.

При необходимости настройте компьютер для работы с каналом Ethernet (установите требуемые сетевые настройки его сетевого адаптера).

Подключите контроллер с дополнительным интерфейсом RS232 к компьютеру, чтобы иметь возможность установить сетевые настройки.


Выберите Дополнительно – Тест соединения с сервером.

В открывшемся диалоговом окне наберите (или выберите из выпадающего списка) IPадрес сервера.

Нажмите кнопку Тест.

Через некоторое время будет выведен результат теста.

Если связь с сервером доступна и компьютер подключен к контроллеру по каналу RS232, то в этом же окне появится информация о текущих сетевых настройках компьютера и кнопка **Настроить WebLinker**, которая позволяет открыть окно **Сетевые настройки** и автоматически установить в соответствующих полях IP-адрес, маску подсети и шлюз.

Подключения

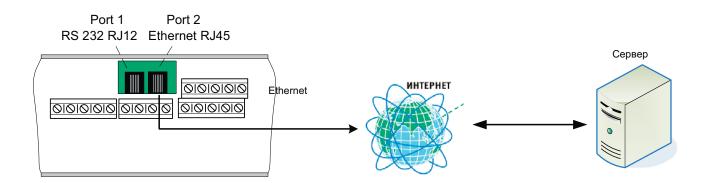
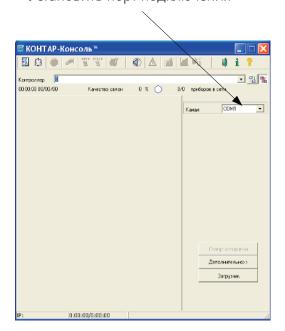
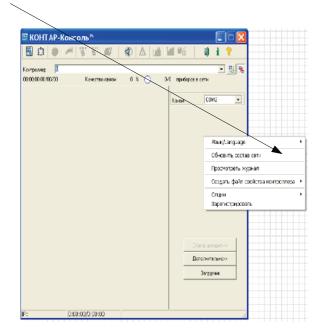
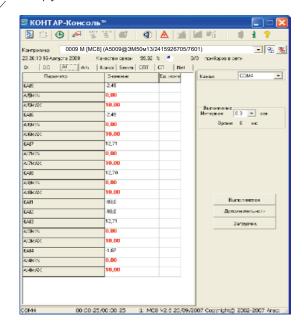



Рисунок 1.


Настройка модулей диспетчеризации 50.09, 50.11

Доступ к настройкам модулей диспетчеризации (50.09,50.11) производится при помощи программы Консоль для этого:

- Загрузить программу Консоль
- Подключить компьютер к порту RS232 модуля 50.09 кабелем (см.выше)
- Установить порт подключения



• Обнавить состав сети

3HTPOPOC

• После загрузки сети выбрать модуль с сетевым номером 9 для 50.09 и 11 для 50.11 и нажать кнопку на панели инструментов Загрузить

Интерфейс

DI — Состояние дискретных входов

DO — состояние дискретных выходов

AI — Состояние аналоговых входов

Arh – Список настройки архива

Server – Список настройки сервера

Net - Монитор сети

Kontrol – Контроль аналоговых датчиков

СПТ – данные с СПТ

СП - СП сеть

Настройка аналоговых входов

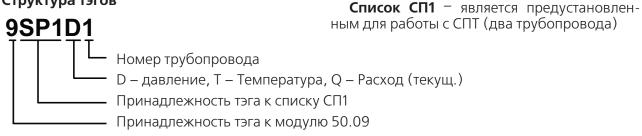
Настройка аналоговых входов заключается в масштабировании входов 4-20mA(Al3-Al8) и вкл. \выкл. аварийных сигналов по обрыву датчиков.

Перейти в список AI

В списку AI названия тэгов соответствуют входам модуля т.е тэг 6AI3 принимает значение с аналогового входа AI3 модуля. Входы AI1-AI2 не масштабируются так как на них подключены термосопротивления с характеристикой Pt1000. Для настройки применяются соответствующие тэги AI3-8Min

Al3-8Max которые необходимо привести в соответствие т.е. 4ma соответствуют значению Al3-8Min, a 20ma соответствуют Al3-8Max.

Перейти в список Kontrol


Установить влаги наличия датчиков(F). Если датчик на соответствующий вход модуля подключен то для выдачи аварийного сигнала об обрыве необходимо установить F= Вкл

Если аварийный сигнал обрыва инициализировать не требуется то F=Выкл

Настройка передачи данных с СП сети

Сбор данных с приборов подключенных к СП сети через бортовой интерфейс RS232 осуществляется модулем 50.09. Для этих целей в нем предусмотрены четыре списка СП1, СП2, СП3, СП4.

Структура тэгов

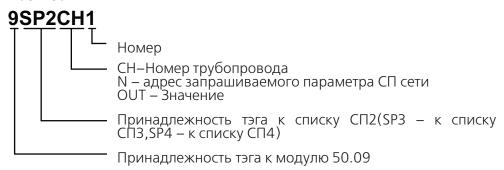
Тэги состояния (относятся только к прибору опрашиваемому из списка СП1):

CRCERR Ошибка контрольной суммы(True)

ERR Ошибка чтения (True)

Нет связи с прибором (True) NA

Безадресный режим работы не поддерживается.


Тэги управления:

9SP1D Сетевой номер прибора в СП-сети с которого необходимо считать данные

9SP1R Сетевой номер прибора в СПсети к которому произведено физическое подключение

Список СП2, СП3, СП4 – являются свободно программируемыми.

Структура тэгов

Тэги управления (свои для каждого списка СП2, СП3, СП4):

9SP1D2 Сетевой номер прибора в СП-сети с которого необходимо считать данные

9SP1R2 Сетевой номер прибора в СПсети к которому произведено физическое подключение

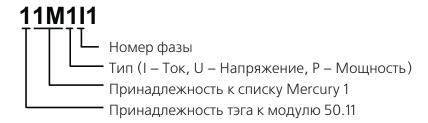
Пример

Если нужно считать данные из счетчика, подключенного к контроллеру, то на входы D и R подается сетевой номер этого счетчика. Если контроллер подключен к одному счетчику, а требуются данные из другого прибора в сети счетчиков, то на входе R задается сетевой номер первого (ретранслятор), а на D – второго (из которого считываются данные).

Безадресный режим работы не поддерживается.

Счетчик, к которому подключен прибор, должен быть настроен следующим образом: во внешнем интерфейсе должен использоваться магистральный протокол СПСеть, и введена настройка «для подключения компьютера», т.е. параметр 003 счетчика должен быть 105XXXXXXX.

Параметр для считывания задается с помощью номера канала СН и номера параметра N.



Настройка передачи данных со счетчика электрической энергии Меркурий 230

Сбор данных со счетчиков подключенных по протоколу RS485 производится через

бортовой интерфейс RS232 (необходим конвертор RS232-RS485) модулем 50.11. Для этих целей в нем предусмотрены два списка Mercury1, Mercury2 (два счетчика).

Структура тэгов

Общие тэги:

11М1Нz Частота сети

11M1kVcH Электрическая энергия кВат в час Для списка Mercury2 8M2Hz, 8M2kVcH

Тэги управления:

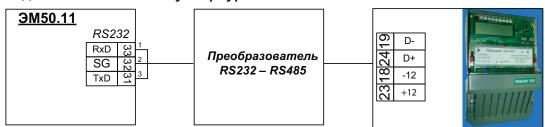
11М1К Коэффициент трансформации

11М1ID Сетевой адрес счетчика в сети САN. Сетевым адресом счетчика являются 2 или 3 последние цифры в заводском номере (зависитот модификации). Шильда с номером расположена на лицевой панели счетчика

Для списка Mercury2 11M2K, 11M2ID

Внешние подключения

Возможны внешние подключения по бортовому порту RS232.


- Приборы СП-сети(50.09)
- ModBus устройство (50.01)
- Счетчик меркурий 230 (RS485) (50.11) опция

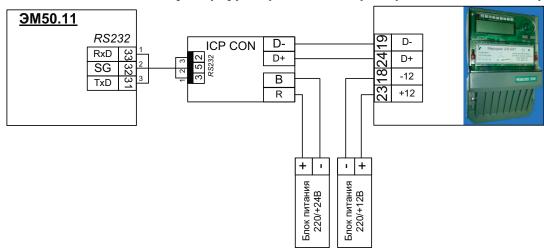
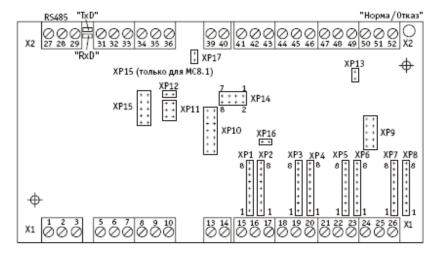

Схема подключения к СПТ

Схема подключения к счетчику Меркурий

Схема подключения к счетчику Меркурий (в качестве преобразователя ICP CON)

SHTPOPOC

Модули Расширения 50.09, 50.11


Обозначения входов и выходов

К клеммам 13, 14 подключается внешний источник (24В, 1,5ВА) для питания цепей гальванического разделителя дискретных входных сигналов.

Центральный процессор (CPU) представляет собой однокристальный микроконтроллер

С8051, включающий многоканальные аналого-цифровой и цифро-аналоговый преобразователи и поддерживающий несколько видов последовательных интерфейсов.

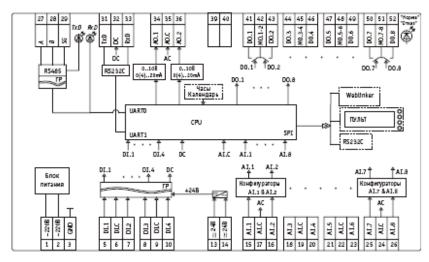
Аппаратное устройство ввода сигналов содержит гальванический разделитель (ГР) для дискретных входных сигналов DI.1...DI.4 и конфигураторы для аналоговых входных сигналов AI.1...AI.8.

AI – аналоговый вход

АІ.С – общая точка налоговых входов

DI – дискретный вход

DI.C – общая точка искретных входов


АО – аналоговый выход

АО.С – общая точка налоговых выходов

DO – дискретный выход

АС – общая точка аналоговая

DC – общая точка цифровая

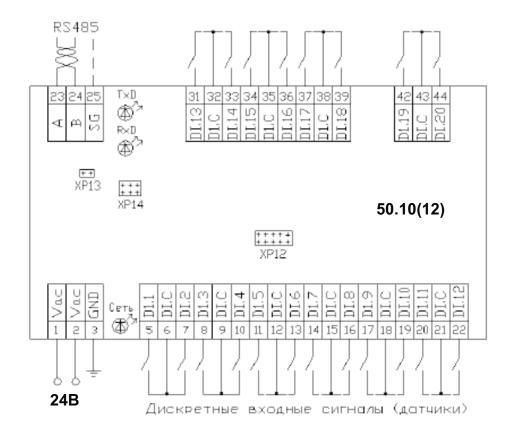
Аппаратное устройство вывода сигналов включает в себя "сухие" ключи дискретных выходных сигналов D0.1...D0.8 и конфигурируемое устройство преобразования аналоговых выходных сигналов A0.1, A0.2.

Блок питания формирует напряжения постоянного тока для питания всех узлов контроллера.

Часы-календарь поддерживают текущее время и календарную дату. При отсутствии питания работают на ионисторе не менее 300 часов.

Интерфейсы:

На основной плате – RS232C и RS485 (гальванически разделенный);



Модули Расширения 50.10, 50.12

Для подключения внешних соединений к винтовым зажимам клеммников используется многожильный медный провод сечением 0,35. Для лучшего контакта рекомендуется применять наконечники для многожильного кабеля соответствующего диаметра.

Для обеспечения безопасности необходимо выполнить заземление модуля (клемма 3 «GND»).

Модули расширения 50.10(12) подключается к сети Энтроматик 50 по интерфейсу RS485 как средство расширения количества дискретных входов сети.

DI – дискретный вход

DI.C – общая точка дискретных входов

XP12 – вилка для записи операционной системы в модуль (технологическая); XP13 – вилка, которая замыкается для подключения резистора 120 Ом при организации сети по интерфейсу RS485;

XP14 — вилка для заводской проверки модуля (технологическая).

Битовые данные

Модуль	Событие	Адрес
	Авария горелки	10001
	STB	10002
	Ав. Котла	10003
	Ав.Насоса котла	10004
	Помеха давление	10005
10	Нет связи с сервером	10006
Модуль 50.01	Обрыв датчика наружной Т	10007
ЛЬ	Обрыв датчика прямой	10008
оду	Обрыв датчика обратной	10009
Σ	Обрыв датчика давления	10010
	Обрыв датчика подпитки	10011
	Обрыв датчика темп.ГВС	10012
	Помеха 50.02	10013
	Помеха 50.03	10014
	Помеха доп мод.упр.	10015
	Помеха доп мод.расиир.	10016
	Авария горелки	10017
	STB	10018
	Ав. Котла	10019
2	Ав.Насоса котла	10020
0.0	Помеха давление	10021
ь 5(Нет Обратной связи котла	10022
цу́г	Внеиляя помеха	10023
Модуль 50.02	Обрыв датчика прямой	10024
_	Обрыв датчика обратной	10025
	Обрыв датчика давления	10026
	Обрывдатчика Давления	10027
	Обрыв Датчика T1	10028
	Обрыв датчика T2	10029

Модуль	Событие	Адрес
	Обрыв датчика наружной Т	10030
	Авария горелки	10033
	STB	10034
	Ав. Котла	10035
~	Ав.Насоса котла	10036
0.03	Помеха давление	10037
ь 5(Нет Обратной связи котла	10038
Модуль 50.03	Внеиляя помеха	10039
Мод	Обрыв датчика прямой	10040
_	Обрыв датчика обратной	10041
	Обрыв датчика давления	10042
	Обрывдатчика Давления	10043
	Обрыв Датчика T1	10044
	Обрывдатчика Т2	10045
3	Обрыв датчика наружной Т	10046
0.03	Обрыв Датчика T1 KO	10049
Модуль 50.03	Событие по входу D I1	10050
пур	Событие по входу D I2	10051
ДОГ	Событие по входу DI3	10052
_	Событие по входу D 14	10053

Битовые данные

Модуль	Событие	Адрес
	Событие по входу W38	10065
	Событие по входу W39	10066
	Событие по входу W40	10067
	Событие по входу W41	10068
	Обрыв датчика T1	10069
	Обрыв датчика Т2	10070
	Обрыв датчика ТЗ	10071
10	Обрыв датчика Т4	10072
Модуль 50.05	Обрыв датчика Тобр	10073
2 5(Обрыв датчика Д4	10074
цулі	Обрыв датчика Тнар	10075
Лор	Обрыв датчика Твн	10076
_	Событие по входу D I1	10081
	Событие по входу DI2	10082
	Событие по входу DI3	10083
	Событие по входу DI4	10084
	Событие по входу DI5	10085
	Событие по входу DI6	10086
	Событие по входу DI7	10087
	Событие по входу DI8	10088
	Событие по входу W38	10097
	Событие по входу W39	10098
	Событие по входу W40	10099
	Событие по входу W41	10100
	Обрыв датчика Т1	10101
	Обрыв датчика Т2	10102
	Обрыв датчика ТЗ	10103
_	Обрыв датчика Т4	10104
0.0	Обрыв датчика Тобр	10105
ь 5(Обрыв датчика Д4	10106
Модуль 5	Обрыв датчика Тнар	10107
> 0	Обрыв датчика Твн	10108
	Событие по входу D I1	10113
	Событие по входу DI2	10114
	Событие по входу DI3	10115
	Событие по входу DI4	10116
	Событие по входу DI5	10117
	Событие по входу DI6	10118
	Событие по входу DI7	10119
	Событие по входу DI8	10120

Модуль	Событие	Адрес
	Событие по входу D I1	10129
	Событие по входу DI2	10130
	Событие по входу DI3	10131
0	Событие по входу DI4	10132
Модуль 50.09	Обрыв по входу Al1	10133
ь 5(Обрыв по входу AI2	10134
пVу	Обрыв по входу AI3	10135
Мод	Обрыв по входу AI4	10136
_	Обрыв по входу AI5	10137
	Обрыв по входу AI6	10138
	Обрыв по входу AI7	10139
	Обрыв по входу AI8	10140
	Событие по входу D I1	10145
	Событие по входу DI2	10146
	Событие по входу DI3	10147
	Событие по входу DI4	10148
	Событие по входу DI5	10149
	Событие по входу DI6	10150
	Событие по входу DI7	10151
0	Событие по входу DI8	10152
0.10	Событие по входу DI9	10153
Иодуль 50.10	Событие по входу DI10	10154
цул	Событие по входу DI11	10161
∑ 	Событие по входу D I12	10162
_	Событие по входу DI13	10163
	Событие по входу D I14	10164
	Событие по входу D I15	10165
	Событие по входу D I16	10166
	Событие по входу D I17	10167
	Событие по входу D I18	10168
	Событие по входу D I19	10169
	Событие по входу DI20	10170

Битовые данные

Модуль	Событие	Адрес
	Событие по входу D I1	10177
	Событие по входу DI2	10178
	Событие по входу DI3	10179
	Событие по входу DI4	10180
50.11	Событие по входу Al1	10181
	Событие по входу AI2	10182
Модуль	Событие по входу AI3	10183
Mo	Событие по входу АІ4	10184
	Событие по входу АІ5	10185
	Событие по входу АІб	10186
	Событие по входу AI7	10187
	Событие по входу АІ8	10188

Модуль	Событие	Адрес
	Событие по входу DI1	10193
	Событие по входу DI2	10194
	Событие по входу DI3	10195
	Событие по входу DI4	10196
	Событие по входу DI5	10197
	Событие по входу DI6	10198
	Событие по входу DI7	10199
0.1	Событие по входу DI8	10200
Модуль 50.12	Событие по входу DI9	10201
ь 5	Событие по входу DI10	10202
дул	Событие по входу DI11	10209
Mo,	Событие по входу DI12	10210
	Событие по входу DI13	10211
	Событие по входу DI14	10212
	Событие по входу DI15	10213
	Событие по входу DI16	10214
	Событие по входу DI17	10215
	Событие по входу DI18	10216
	Событие по входу DI19	10217
	Событие по входу DI20	10218

Битовые данные соответствуют входным катушкам по классификации протокола (пространство 1хххх). Чтение этих входов осуществляется функцией 2.

В запросах от мастера сети адреса катушек (так же, как и адреса регистров) указываются в смещении относительно первого элемента. Так, катушке 00017 будет соответствовать смещение 16.

Для выделения значений отдельных катушек можно использовать битовые операции (кодирования-декодирования).

Более полную информацию по функциям протокола можно получить из спецификаций протокола Modbus.

Для реализации проверки связи по протоколу ModBus предусмотренконтрольный бит на входной катушке по адресу 00001. При установление бита в положение True с ведущего ModBus устройства на операторской панели отображается наличие связи. Запись реализуется функцией 5, или функцией 15.

ВНИМАНИЕ!!!

Энтроматик 50.01 является ведомым Mod-Bus устройством

Аналоговые данные

Модуль	одуль Событие					
	Темп.Прямой котла	30001				
	Темп.Обратки котла	30002				
50.01	Давление котла	30003 30004				
Модуль 50.01	Данные датчика подпитки	30005 30006				
Mo	Температура стратегии	30007				
	Уставка стратегии	30008				
	Температура ГВС	30009				
	Темп.Прямой котла	30010				
7	Темп.Обратки котла	30011				
50.0	Давление котла	30012 30013				
Модуль 50.02	Данные датчика подпитки	30014 30015				
2	Значение датчика T1	30016				
	Значение датчика Т2	30017				
	Темп.Прямой котла	30018				
)3	Темп.Обратки котла	30019				
Иодуль 50.03	Давление котла	30020 30021				
Іодулі	Данные датчика подпитки	30022 30023				
>	Значение датчика Т1	30024				
	Значение датчика Т2	30025				
Модуль	Т контура отопления	30026				
50.04	Уставка КО	30027				
	Данные со входа Т1	30028				
	Данные со входа Т2	30029				
	Данные со входа ТЗ	30030				
	Данные со входа Т4	30031				
2	Данные со входа Тобр	30032 30033				
Модуль 50.05	Данные со входа Д4	30034 30035				
уль	Данные со входа Тнар	30036				
Лод	Данные со входа Ткот	30037				
2	Уставка контура 1	30038				
	Уставка контура 2	30039				
	Уставка контура 3	30040				
	Уставка контура 3					
	Данные со входа T1	30041				

Модуль	дуль Событие						
	Данные со входа Т2	30043					
	Данные со входа ТЗ	30044					
	Данные со входа Т4	30045					
07	Данные со входа Тобр	30046 30047					
Модуль 50.07	Данные со входа Д4	30048 30049					
дул	Данные со входа Тнар	30050					
Mo	Данные со входа Ткот	30051					
	Уставка контура 1	30052					
	Уставка контура 2	30053					
	Уставка контура 3	30054					
	Уставка контура 4	30055					
	Данные со входа AI1	30056					
	Данные со входа AI2	30057					
	Данные со входа AI3	30058 30059					
Модуль 50.09	Данные со входа AI4	30060 30061					
дуль !	Данные со входа AI5	30062 30063					
Mo	Данные со входа AI6	30064 30065					
	Данные со входа AI7	30066 30067					
	Данные со входа AI8	30068 30069					
	Данные со входа AI1	30070					
	Данные со входа AI2	30071					
	Данные со входа AI3	30072 30073					
50.11	Данные со входа AI4	30074 30075					
Лодуль !	Данные со входа AI5	30076 30077					
Mo	Данные со входа AI6	30078 30079					
	Данные со входа AI7	30080 30081					
	Данные со входа AI8	30082 30083					

Аналоговые данные соответствуют входным регистрам по классификации протокола (пространство Зхххх). Чтение этих входов осуществляется функцией 4.

Нахождение	Тэг	Список	Тип	Статус	Примечание
	5002		Bool	Date	
	5003		Bool	Date	
	5004		Bool	Date	
	5005		Bool	Date	
	5007	Net	Bool	Date	Наличие в сети одноименного модуля
	5009		Bool	Date	
	5010		Bool	Date	
	5011		Bool	Date	
	5012		Bool	Date	
	Boiler1		Bool	Stat	Вкл./Выкл. Котла
	GGR		Float	Stat	Гистерезис функции горячего резерва
	GR		Bool	Stat	Вкл./Выкл. Функции горячего резерва
	LineBoiler		Bool	Stat	Вкл./Выкл. Температурной кривой котла
	MaxD		Float	Stat	Макс.уставка давления котла
	MinD		Float	Stat	Мин.уставка давления котла
	MaxG		Float	Stat	Уст.Температуры отключения горелки
	PrivBoiler		Float	Stat	Уставка темп.привышения котла
	PrivGR	Boiler	Float	Stat	Превышение горячего резерва
	ProtectD		Float	Stat	Вкл./Выкл. Функции защиты по давлению
	SPBoiler		Float	Stat	Уставка котла
ЭM50.01	SPGR		Float	Stat	Уставка горячего резерва
<i>5</i> 1VI5U.U1	TKP1		Float	Date	Температура Прямой линии
	TKP2		Float	Date	Температура обратной линии
	DBoiler		Float	Date	Давление котла
	SPtko		Float	Stat	Уставка защиты котла
	SPb		Float	Date	Текущая уставка котла
	NWorkBoiler		Float	Date	Наработка котла
	NWorkPBoiler		Float	Date	Наработка насоса котла
	NWorkPRec	Main	Float	Date	Наработка насоса рециркуляции ГВС
	NWorkPZ	Σ	Float	Date	Насос загрузки ГВС
	ResNWork		Bool	Stat	Сброс наработки
	TU		Float	Date	Наружная температура
	LineMaxStr		Float	Stat	Верхние ограничение стратегии
	LineMinStr		Float	Stat	Нижние ограничение стратегии
	NWorkB	STR	Float	Stat	Наработка каскада
	PVStr	.5	Float	Date	Температура стратегии
	STRpriv		Float	Stat	Стратегическое привышение
	tKaskad		Float	Stat	Время каскада
	Dpdp		Float	Date	Давление подпитки
	Gpdp	Pdp	Float	Stat	Гистерезис подпитки
	pdp	P	Bool	Stat	Вкл/выкл подпитки
	SPpdp		Float	Stat	Уставка подпитки

Нахождение	Тэг	Список	Тип	Статус	Примечание
	OUT	OUT	Float	Date	Внешнее задание
	LimMax		Float	Stat	Верхние ограничение отопит.кривой
	LimMin		Float	Stat	Нижние ограничение отопит кривой
	T1	-	Float	Stat	П Т
	T2	<u>e</u>	Float	Stat	Погода Теплоноситель
	T3	Line	Float	Stat	T1> T3
	T4		Float	Stat	T2> T4
	Tgraf		Float	Date	Расчетная уставка по отопит.кривой
	LineBoiler	-	Bool	Stat	Вкл./Выкл отопительной кривой
	Gvs		Bool	Stat	Вкл./Выкл. Контура ГВС
	Bgis	-	Float	Stat	Гистерезис функции ГВС
	Bkol	-	Float	Stat	Кол-во включений в час
	Bconst	gvs	Bool	Stat	Постоянная рециркуляция
	SP		Float	Stat	Уставка контура ГВС
	SPpriv		Float	Stat	Привышение
	TGvs		Float	Date	текущая температура
	Arh		Bool	Stat	Вкл/Выкл Архивирования
	Lim		Float	Stat	Скважность
	Т	Arh	Float	Stat	Период опроса
	Wr		INT	Data	Кол-во записей
	1st	+ <u>-</u>	Bool	Date	Запрос 1 ступени
ЭМ50.01	2stClose		Bool	Date	2-я ступень меньше
	2stOpen		Bool	Date	Запрос 2 ступень (больше)
	3hClose	SysKot	Bool	Date	Исполнит.оргон котла закрытие
	3hOpen	S	Bool	Date	Исполнит.оргон котла открытие
	pb1		Bool	Date	Насос котла
	onoff		Bool	Date	Автоматика котла
	albr		Bool	Alarm	Авария горелки
	alprotect		Bool	Alarm	Авария внешний системы безопасности
	alboiler		Bool	Alarm	Авария котла
	alpumpb		Bool	Alarm	Авария насоса котла
	ald		Bool	Alarm	Авария по давлению котла
	Alarm5001		Bool	Alarm	Наличие аварии в модуля 50.01
	Alarm5002		Bool	Alarm	Наличие аварии в модуля 50.02
	Alarm5003	Alarm	Bool	Alarm	Наличие аварии в модуля 50.03
	Alarm5004	Ala	Bool	Alarm	Наличие аварии в модуля 50.04
	Alarm5005		Bool	Alarm	Наличие аварии в модуля 50.05
	Alarm5007		Bool	Alarm	Наличие аварии в модуля 50.07
	Alarm5009		Bool	Alarm	Наличие аварии в модуля 50.09
	Alarm50011		Bool	Alarm	Наличие аварии в модуля 50.011
	Alnssensortu		Bool	Alarm	Обрыв датчика нар.температуры
	Alnssensorp		Bool	Alarm	Обрыв датчика прямой котла
	Alnssensoro		Bool	Alarm	Обрыв датчика обратки котла

Нахождение	Тэг	Список	Тип	Статус	Примечание
	Alnssensordb		Bool	Alarm	Обрыв датчика давления котла
	Alnssensordp	_	Bool	Alarm	Обрыв датчика подпитки
ЭM50.01	Alnssensorgvs	Alarm	Bool	Alarm	Обрыв датчика гвс
	Alnssensorstr	_	Bool	Alarm	Обрыв датчика стратегии
	Alentromatic		Bool	Date	Общая авария
	Boiler1		Bool	Stat	Вкл./Выкл. Котла
	GGR		Float	Stat	Гистерезис функции горячего резерва
	GR		Bool	Stat	Вкл./Выкл. Функции горячего резерва
	LineBoiler		Bool	Stat	Вкл./Выкл. Температурной кривой котла
	MaxD		Float	Stat	Макс.уставка давления котла
	MinD		Float	Stat	Мин.уставка давления котла
	MaxG		Float	Stat	Уст.Температуры отключения горелки
	PrivBoiler	_	Float	Stat	Уставка темп.привышения котла
	PrivGR	Boiler	Float	Stat	Превышение горячего резерва
	ProtectD		Float	Stat	Вкл./Выкл. Функции защиты по давлению
	SPBoiler		Float	Stat	Уставка котла
	SPGR		Float	Stat	Уставка горячего резерва
	TKP1		Float	Date	Температура Прямой линии
	TKP2		Float	Date	Температура обратной линии
	DBoiler		Float	Date	Давление котла
	SPtko		Float	Stat	Уставка защиты котла
	SPb		Float	Date	Текущая уставка котла
	DBoiler		Float	Date	Давление котла
ЭМ50.02	NWorkBoiler		Float	Date	Наработка котла
ЭМ50.03	NWorkKo	Main	Float	Date	Наработка насоса контура отопления
	NWorkpb	Σ	Float	Date	Наработка насоса котла
	ResNWork		Bool	Stat	Сброс наработки
	TU		Float	Date	Наружная температура
	LimMax		Float	Stat	Верхние ограничение отопит.кривой
	LimMin		Float	Stat	Нижние ограничение отопит.кривой
	T1		Float	Stat	Погода Теплоноситель
	T2	Line	Float	Stat	T1> T3
	T3		Float	Stat	T2> T4
	T4		Float	Stat	711
	Tgraf		Float	Date	Расчетная уставка по отопит.кривой
	LineBoiler		Bool	Stat	Вкл./Выкл отопительной кривой
	1st		Bool	Date	Запрос 1 ступени
	2stClose		Bool	Date	2-я ступень меньше
	2stOpen	ot	Bool	Date	Запрос 2 ступень(больше)
	3hClose	SysKot	Bool	Date	Исполнит.оргон котла закрытие
	3hOpen	S	Bool	Date	Исполнит.оргон котла открытие
	pb		Bool	Date	Насос котла
	onoff		Bool	Date	Автоматика котла

Нахождение	Тэг	Список	Тип	Статус	Примечание
	Contour2		Bool	Stat	Вкл/Выкл контур 2
	Lim		Bool	Stat	Вкл/Выкл функция ограничения
	SPLim	r 2	Float	Stat	Уставка функции ограничения
	SPContour2 PVk2	Contour 2	Float	Stat	Уставка контура
		Co	Float	Date	Текущая температура контура
	SPreal		Float	Date	Текущая уставка контура
	LimAnOut		Float	Date	Аналоговое ограничение
	Contour1		Bool	Stat	Вкл./Выкл. Контура ГВС
	LineMax		Float	Stat	Верхние ограничение отопит.кривой
	LineMin		Float	Stat	Нижние ограничение отопит.кривой
	T1		Float	Stat	
	T2		Float	Stat	Погода Теплоноситель Т1> Т3
	T3	_	Float	Stat	T2> T4
	T4	onr,	Float	Stat	1
	SPgraf	Contour 1	Float	Date	Расчетная уставка с отопит.кривой
	PVk		Float	Date	Текущая температура контура
	SPreal		Float	Date	Текущая уставка контура
	open		Bool	Date	Исполнит. оргон контура открытие
ЭМ50.02	close		Bool	Date	Исполнит. оргон контура закрытие
ЭМ50.03	Line		Bool	Stat	Работа по от.кривой
	Protectpv2		Bool	Stat	Функция защиты котла
	Arh		Bool	Stat	Вкл/Выкл Архивирования
	Lim	Arh	Float	Stat	Скважность
	Т	₹	Float	Stat	Период опроса
	Wr		INT	Data	Кол-во записей
	albr		Bool	Alarm	Авария горелки
	alprotect		Bool	Alarm	Авария внешний системы безопасности
	alboiler		Bool	Alarm	Авария котла
	alpumpb	Alarm	Bool	Alarm	Авария насоса котла
	ald	Ala	Bool	Alarm	Авария по давлению котла
	Alnssensortu		Bool	Alarm	Обрыв датчика нар.температуры
	Alnssensorp		Bool	Alarm	Обрыв датчика прямой котла
	Alnssensoro		Bool	Alarm	Обрыв датчика обратки котла
	Alnssensordb		Bool	Alarm	Обрыв датчика давления котла
	Alnssensordp		Bool	Alarm	Обрыв датчика подпитки
	Alnssensorgvs	Alarm	Bool	Alarm	Обрыв датчика гвс
	Alnssensorstr	4	Bool	Alarm	Обрыв датчика стратегии
	Alentromatic		Bool	Date	Общая авария

Нахождение	Тэг	Список	Тип	Статус	Примечание
	T1		Float	Stat	
	T2		Float	Stat	Погода Теплоноситель Т1> Т3
	T3	Line	Float	Stat	T2> T4
	T4		Float	Stat	12 / 14
	SPgraf		Float	Date	Расчетная уставка с отопит.кривой
	Line		Bool	Stat	Вкл/Выкл отопительной кривой
ЭМ50.04	Contour		Float	Stat	Вкл/Выкл контур отопления
510150.04	SP	Cotour	Float	Stat	Уставка контура отопления
	SPreal	Ŭ	Float	Date	Текущая уставка контура отопления
	4D1		Bool	Alarm	Событие по входу DI1
	4D2	Alarm	Bool	Alarm	Событие по входу DI2
	4D3		Bool	Alarm	Событие по входу DI3
	4D4		Bool	Alarm	Событие по входу DI4
	AlarmKO		Bool	Alarm	Обрыв датчика КО
	1T1		Analog	Date	Данные со входа Т1
	1T2		Analog	Date	Данные со входа Т2
	1T3		Analog	Date	Данные со входа ТЗ
	1T4	ValueIn	Analog	Date	Данные со входа Т4
	1D4	Valu	Analog	Date	Данные со входа D4
ЭМ50.05	1Tĸ		Analog	Date	Данные со входа Тк
	1Tn		Analog	Date	Данные со входаTn
	1T _o		Analog	Date	Данные со входа То
	1T1F	Alarm	Bool	Alarm	Обрыв датчика T1
	1T2F	Ala	Bool	Alarm	Обрыв датчика Т1

Нахождение	Тэг	Список	Тип	Стату(Примечание
	1T3F		Bool	Alarm	Обрыв датчика T1
	1TD4F		Bool	Alarm	Обрыв датчика T1
	1TKF	-	Bool	Alarm	Обрыв датчика Тк
	1TnF		Bool	Alarm	Обрыв датчика Tn
	1ToF		Bool	Alarm	Обрыв датчикаТо
	1AL29	_ [Bool	Alarm	Событие по замкнутому контакту клемма 29
	1AL30	Alarm	Bool	Alarm	Событие по замкнутому контакту клемма 30
	1AL31	◀ [Bool	Alarm	Событие по замкнутому контакту клемма 31
	1AL32		Bool	Alarm	Событие по замкнутому контакту клемма 32
	1AL33		Bool	Alarm	Событие по замкнутому контакту клемма 33
	1AL34		Bool	Alarm	Событие по замкнутому контакту клемма 34
	1AL35		Bool	Alarm	Событие по замкнутому контакту клемма 35
	1AL36		Bool	Alarm	Событие по замкнутому контакту клемма 36
	1W38		Bool	Event	Событие по замкнутому контакту клемма 38
	1W39	Event	Bool	Event	Событие по замкнутому контакту клемма 39
	1W40	EVE	Bool	Event	Событие по замкнутому контакту клемма 40
	1W41		Bool	Event	Событие по замкнутому контакту клемма 41
	GKal		Float	Stat	Гистерезис Калорифера
	GVentilytor	Fun	Float	Stat	Гистерезис Вентилятора
	Kal		Float	Stat	Вкл/Выкл Калорифер
ЭМ50.05	SPKal]	Float	Stat	Уставка Калооисьеоа
ЭM50.07	SPVentilytor	_	Float	Stat	Уставка Вентилятора
	Ventilytor		Float	Stat	Вкл/Выкл Вентилятор
	Counter1		Bool	Stat	Вкл/Выкл Контур 1
	Faktor				Системная переменная
	Line		Bool	Stat	Вкл/Выкл Отопительная кривая
	MaxLine	ur 3	Float	Stat	Верхние ограничение отопит.кривой
	MinLine	oto	Float	Stat	Нижние ограничение отопит.кривой
	Modif				Системная переменная
	SP	ur 2	Float	Stat	Уставка контуоа
	T1	Cotour 1, Cotour 2, Cotour 3	Float	Stat	Погода Теплоноситель
	T2]	Float	Stat	
	T3	nı	Float	Stat	T1> T3
	T4] Sot	Float	Stat	T2> T4
	Zobr				Системная переменная
	SPreal		Float	Date	Текущая уставка
	TVal				Системная переменная
	AnalogLim		Float	Stat	Ограничение ан.выхода
	BConst	4	Bool	Stat	Постоянная оабота нас. оениокулянии
	BGis	Cotour 4	Float	Stat	ГистеоезисГВС(бойле^
	BKol	Ç	Float	Stat	Кол-во вкл.в час нас. рециркуляции
	Boiler	1	Bool	Stat	Вкл/выкл режима ГВС с бойлером

Нахождение	Тэг	Список	Тип	Статус	Примечание
	Counter4		Bool	Stat	Вкл/Выкл Контур 4
	CounterGVS] [Системная переменная
	D				Системная переменная
	GVS	4			Системная переменная
ЭM50.05	KP	Contour 4			Системная переменная
ЭM50.07	PrivGVS] Jut	Float	Stat	Привышение на ТО
	SP] ŭ	Float	Stat	Уставка контура
	SPcorr	1			Системная переменная
	TD	1			Системная переменная
	TVal	1			Системная переменная
	9AI1		Float	Data	Данныесан.ВходаAl1
	9AI2	1	Float	Data	Данные с ан.ВходаAI2
	9AI3	1	Float	Data	Данные с ан.ВходаAI3
	9AI4	1 _	Float	Data	Данные с ан.ВходаАІ4
	9AI5	₹	Float	Data	Данные с ан.ВходаАІ5
	9AI6	1	Float	Data	Данные с ан.ВходаАІб
	9AI7	- -	Float	Data	Данные с ан.ВходаАІ7
	9AI8		Float	Data	Данные с ан.ВходаАІ8
	9DI1		Bool	Alarm	Данные с дискретного входа DI1
	9DI2		Bool	Alarm	Данные с дискретного входа DI1
	9DI3		Bool	Alarm	Данные с дискретного входа DI1
	9DI4		Bool	Alarm	Данные с дискретного входа DI1
	9DO3		Bool	Stat	Управление дискретного выходом DO3
	9DO4	1	Bool	Stat	Управление дискретного выходом D04
	9DO5	1 _ 1	Bool	Stat	Управление дискретного выходом D05
	9DO6	0	Bool	Stat	Управление дискретного выходом D06
	9D07	1	Bool	Stat	Управление дискретного выходом D07
ЭМ50.09	9DO8	1	Bool	Stat	Управление дискретного выходом DO8
	9AI1F		Bool	Alarm	Обрывпоан.ВходуАІ1
	9AI2F	1 1	Bool	Alarm	Обрыв по ан.ВходуАІ2
	9AI3F	1	Bool	Alarm	Обрыв по ан.ВходуАІЗ
	9AI4F	1	Bool	Alarm	Обрыв по ан.ВходуАІ4
	9AI5F	1	Bool	Alarm	Обрыв по ан.ВходуАІ5
	9AI6F	-	Bool	Alarm	Обрыв по ан.ВходуАІ6
	9A7F	-	Bool	Alarm	Обрыв по ан.ВходуАІ7
	9AI8F	<u> </u>	Bool	Alarm	Обрыв по ан.ВходуАП
	F1	Kontrol	Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу Аї
	F2	_	Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АГ
	F3		Bool		Вкл/Выкл Контроль обрыва по ан. Входу А.
	F4			Stat	Вкл/Выкл Контроль обрыва по ан. Входу А1
		-	Bool	Stat	
	F5	-	Bool	Stat	Вкл/Выкл Контроль обрыва по ан. Входу А!
	F6	-	Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АК
	F7	-	Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АГ
	F8		Bool	Stat	Вкл/Выкл Контроль обрыва по ан. Входу А18

Нахождение	Тэг	Список	Тип	Статус	Примечание
	Arh		Bool	Stat	Вкл/Выкл Архивирования
	Lim	Arh	Float	Stat	Скважность
	Т	₹	Float	Stat	Период опроса
	Wr		INT	Data	Кол-во записей
	9SP1D		INT	Stat	Прибор назначения
	9SP1D1		Float	Data	Давление по 1-му трубопроводу (СПТ)
	9SP1D2	CII1	Float	Data	Давление по 2-му трубопроводу (СПТ)
	9SP1D3		Float	Data	давление по 3-му трусопроводу (Cl 11)
	9SP1D4		Float	Data	Давление по 4-му трубопроводу (СПТ)
	9SP1D5		Float	Data	Давление по 5-му трубопроводу (СПТ)
	9SP1D6		Float	Data	Давление по 6-му трубопроводу (СПТ)
	9SP1Q1		Float	Data	насход по 1-му труоопроводу (СІ 11)
	9SP1Q2		Float	Data	Расход по 2-му трубопроводу (СПТ)
	9SP1Q3		Float	Data	Расход по 3-му трубопроводу (СПТ)
	9SP1Q4		Float	Data	Расход по 4-му трубопроводу (СПТ)
	9SP1Q5		Float	Data	Расход по 5-му трубопроводу (СПТ)
	9SP1Q6		Float	Data	Расход по 6-му трубопроводу (СПТ)
	9SP1T1		Float	Data	Темпеоатуоа по 1-му тоубопооводу (СПТ)
	9SP1T2	CII	Float	Data	ТеМпераТура по 2-му трмбаправапм (СПТ)
	9SP1T3		Float	Data	Температура по 3-му трубопроводу (СПТ)
	9SP1T4		Float	Data	Температура по 4-му трубопроводу (СПТ)
2N/IEO 00	9SP1T5		Float	Data	Температура по 5-му трубопроводу (СПТ)
ЭМ50.09	9SP1T6		Float	Data	Температура по 6-му трубопроводу (СПТ)
	CRCERR		Bool	Data	Ошибка контрольной суммы
	ERR		Bool	Data	Ошибка чтения
	NA		Bool	Data	Нет связи
	9SP1R		INT	Stat	Ретранслятор
	9SP2CH1		Int	Stat	Канал для OUT1
	9SP2CH2		Int	Stat	Канал для OUT2
	9SP2CH3		Int	Stat	Канал для OUT3
	9SP2CH4		Int	Stat	Канал для OUT4
	9SP2CH5		Int	Stat	Канал для OUT5
	9SP2CH6		Int	Stat	Канал для OUT6
	9SP2N1		Int	Stat	Адрес для OUT1
	9SP2N2		Int	Stat	Адрес для OUT2
	9SP2N3	CIIZ	Int	Stat	Адрес для OUT3
	9SP2N4		Int	Stat	Адрес для OUT4
	9SP2N5		Int	Stat	Адрес для OUT5
	9SP2N6		Int	Stat	Адрес для OUT6
	9SP2OUT1		Float	Data	Значение 1
	9SP2OUT2		Float	Data	Значение 2
	9SP2OUT3		Float	Data	Значение 3
	9SP2OUT4		Float	Data	Значение 4
	9SP2OUT5		Float	Data	Значение 5

Нахождение	Тэг	Список	Тип	Статус	Примечание
	9SP2OUT6		Float	Data	Значение б
	9SP2D2	CII2	Int	Stat	Прибор назначения
	9SP2R2		Int	Stat	Ретронслятор
	9SP3CH1		Int	Stat	Канал для OUT1
	9SP3CH2		Int	Stat	Канал для OUT2
	9SP3CH3		Int	Stat	Канал для OUT3
	9SP3CH4		Int	Stat	Канал для OUT4
	9SP3CH5		Int	Stat	Канал для OUT5
	9SP3CH6		Int	Stat	Канал для OUT6
	9SP3N1		Int	Stat	Адрес для OUT1
	9SP3N2		Int	Stat	Адрес для OUT2
	9SP3N3		Int	Stat	Адрес для OUT3
	9SP3N4	CII3	Int	Stat	Адрес для OUT4
	9SP3N5	ם ל	Int	Stat	Адрес для OUT5
	9SP3N6		Int	Stat	АдоесдляOUT6
	9SP3OUT1		Float	Data	Значение 1
	9SP3OUT2		Float	Data	Значение 2
	9SP3OUT3		Float	Data	Значение 3
	9SP3OUT4		Float	Data	Значение 4
	9SP3OUT5		Float	Data	Значение 5
	9SP3OUT6		Float	Data	Значение 6
ЭМ50.09	9SP3D3		Int	Stat	Прибор назначения
<i>5</i> 1V15U.U9	9SP3R3		Int	Stat	Ретранслятор
	9SP4CH1		Int	Stat	Канал для OUT1
	9SP4CH2		Int	Stat	Канал для OUT2
	9SP4CH3		Int	Stat	Канал для OUT3
	9SP4CH4		Int	Stat	Канал для OUT4
	9SP4CH5		Int	Stat	Канал для OUT5
	9SP4CH6		Int	Stat	Канал для OUT6
	9SP4N1		Int	Stat	Адрес для OUT1
	9SP4N2		Int	Stat	Адрес для OUT2
	9SP4N3		Int	Stat	Адрес для OUT3
	9SP4N4	СПЗ	Int	Stat	Адрес для OUT4
	9SP4N5	Ū	Int	Stat	Адрес для OUT5
	9SP4N6		Int	Stat	Адрес для OUT6
	9SP4OUT1		Float	Data	Значение 1
	9SP4OUT2		Float	Data	Значение 2
	9SP4OUT3		Float	Data	Значение 3
	9SP4OUT4		Float	Data	Значение 4
	9SP4OUT5		Float	Data	Значение 5
	9SP4OUT6		Float	Data	Значение 6
	9SP4D3		Int	Stat	Прибор назначения
	9SP4R3		Int	Stat	Ретранслятор
		Server			Системные переменные

Нахождение	Тэг	Список	Тип	Статус	Примечание
	10DI1		Bool	Alarm	Данные с дискретного входа DI1
	10DI2		Bool	Alarm	Данные с дискретного входа DI2
	10DI3		Bool	Alarm	Данные с дискретного входа DI3
	10DI4		Bool	Alarm	Данные с дискретного входа DI4
	10DI5		Bool	Alarm	Данные с дискретного входа DI5
	10DI6		Bool	Alarm	Данные с дискретного входа DI6
	10DI7		Bool	Alarm	Данные с дискретного входа DI7
	10DI8		Bool	Alarm	Данные с дискретного входа DI8
	10DI9		Bool	Alarm	Данные с дискретного входа DI9
	10DI10	∢	Bool	Alarm	Данные с дискретного входа DI10
	10DI11	DIA	Bool	Alarm	Данные с дискретного входа DI11
	10DI12		Bool	Alarm	Данные сдискретного входа DI12
ЭМ50.10	10DI13		Bool	Alarm	Данные с дискретного входа DI13
	10DI14		Bool	Alarm	Данные сдискретного входа DI14
	10DI15		Bool	Alarm	Данные сдискретного входа DI15
	10DI16		Bool	Alarm	Данные сдискретного входа DI16
	10DI17		Bool	Alarm	Данные сдискретного входа DI16
	10DI18		Bool	Alarm	Данные сдискретного входа DI18
	10DI19		Bool	Alarm	Данные сдискретного входа DI19
	10DI20		Bool	Alarm	Данные сдискретного входа DI20
	Arh		Bool	Stat	Вкл/Выкл Архивирования
	Lim		Float	Stat	Скважность
	Т	Arh	Float	Stat	Период опроса
	Wr		INT	Data	Кол-во записей

Нахождение	Тэг	Список	Тип	Статус	Примечание
	11DI1		Bool	Alarm	Данные с дискретного входа DI1
	11DI2		Bool	Alarm	Данные с дискретного входа DI2
	11DI3		Bool	Alarm	Данные с дискретного входа DI3
	11DI4		Bool	Alarm	Данные с дискретного входа DI4
	11DO1		Bool	Stat	Управление дискретного выходом D01
	11DO2		Bool	Stat	Управление дискретного выходом D02
	11DO3		Bool	Stat	Управление дискретного выходом D O 3
	11DO4	00	Bool	Stat	Управление дискретного выходом D04
	11DO5		Bool	Stat	Управление дискретного выходом DO5
	11DO6		Bool	Stat	Управление дискретного выходом D06
	11DO7		Bool	Stat	Управление дискретного выходом D07
	11DO8		Bool	Stat	Управление дискретного выходом DO8
	11AI1		Float	Data	Данныесан.ВходаAl1
	11AI2		Float	Data	Данные с ан.ВходаАІ2
	11AI3		Float	Data	Данные с ан.ВходаАІЗ
	11AI4	₹	Float	Data	Данные с ан.ВходаАІ4
	11AI5		Float	Data	Данные с ан.ВходаАІ5
	11AI6		Float	Data	Данные с ан.ВходаАІб
	11AI7		Float	Data	Данные с ан.ВходаАІ7
ЭМ50.11	11AI8		Float	Data	Данные с ан.ВходаА18
<i>5</i> 1VI5U.11	11AI1F		Bool	Alarm	Обрывпоан.ВходуАl1
	11AI2F		Bool	Alarm	Обрыв по ан.ВходуА12
	11AI3F		Bool	Alarm	Обрыв по ан.Входу AI3
	11AI4F		Bool	Alarm	Обрыв по ан.ВходуА14
	11AI5F		Bool	Alarm	Обрыв по ан.ВходуАІ5
	11AI6F		Bool	Alarm	Обрыв по ан.ВходуА16
	11A7F		Bool	Alarm	Обрыв по ан.ВходуАІ7
	11AI8F	itrol	Bool	Alarm	Обрыв по ан.Входу AI8
	F1	Kontrol	Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІ1
	F2		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІ2
	F3		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу AI3
	F4		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІ4
	F5		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІ5
	F6		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІб
	F7		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу АІ7
	F8		Bool	Stat	Вкл/Выкл Контроль обрыва по ан.Входу А18
	Arh		Bool	Stat	Вкл/Выкл архивирования
	Lim	Arh	Float	Stat	Скважность
	Т	Ā	Float	Stat	Период опроса
	Wr		Int	Data	Кол-во записей

Нахождение	Тэг	Список	Тип	Статус	Примечание
	11M1I1		Float	Data	Ток Фаза 1
	11M1I2		Float	Data	Ток Фаза 2
	11M1I3		Float	Data	Ток Фаза 3
	11M1U1		Float	Data	Напряжение Фаза 1
	11M1U2		Float	Data	Напряжение Фаза 2
	11M1U3		Float	Data	Напряжение Фаза 3
	11M1P1		Float	Data	Мощность Фаза 1
	11M1P2	Mercury 1	Float	Data	Мощность Фаза 2
	11M1P3	ĕ	Float	Data	Мощность Фаза 3
	11M1Hz		Float	Data	Частота
	11M1kVcH		Float	Data	Работа
	11M1ID		Int	Stat	Системные переменные
	11M1K		Float	Stat	Системные переменные
	11M1ERR		Bool	Data	Ошибка чтения
DB4E0 44	11M1NA] [Bool	Data	Нет связи
ЭМ50.11	11M2I1		Float	Data	Ток Фаза 1
	11M2I2	1 [Float	Data	Ток Фаза 2
	11M2I3] [Float	Data	Ток Фаза 3
	11M2U1] [Float	Data	Напряжение Фаза 1
	11M2U2	y 2	Float	Data	Напряжение Фаза 2
	11M2U3		Float	Data	Напряжение Фаза 3
	11M2P1		Float	Data	Мощность Фаза 1
	11M2P2	Mercury 2	Float	Data	Мощность Фаза 2
	11M2P3] Ä	Float	Data	Мощность Фаза 3
	11M2Hz		Float	Data	Частота
	11M2kVcH	1 [Float	Data	Работа
	11M2ID] [Int	Stat	Системные переменные
	11M2K] [Float	Stat	Системные переменные
	11M2ERR		Bool	Data	Ошибка чтения
	11M2NA		Bool	Data	Нет связи
	12DI1		Bool	Event	Данные с дискретного входа DI1
	12DI2] [Bool	Event	Данные с дискретного входа DI2
	12DI3] [Bool	Event	Данные с дискретного входа DI3
	12DI4	1 [Bool	Event	Данные с дискретного входа DI4
	12DI5] [Bool	Event	Данные с дискретного входа DI5
	12DI6	1 [Bool	Event	Данные с дискретного входа DI6
28450.42	12DI7]	Bool	Event	Данные с дискретного входа DI7
ЭМ50.12	12DI8	DA P	Bool	Event	Данные с дискретного входа DI8
	12DI9		Bool	Event	Данные с дискретного входа DI9
	12DI10		Bool	Event	Данные с дискретного входа DI10
	12DI11		Bool	Event	Данные с дискретного входа DI11
	12DI12		Bool	Event	Данные с дискретного входа DI12
	12DI13		Bool	Event	Данные с дискретного входа DI13
	12DI14	1	Bool	Event	Данные сдискретного входа DI14

Диспетчерские сигналы

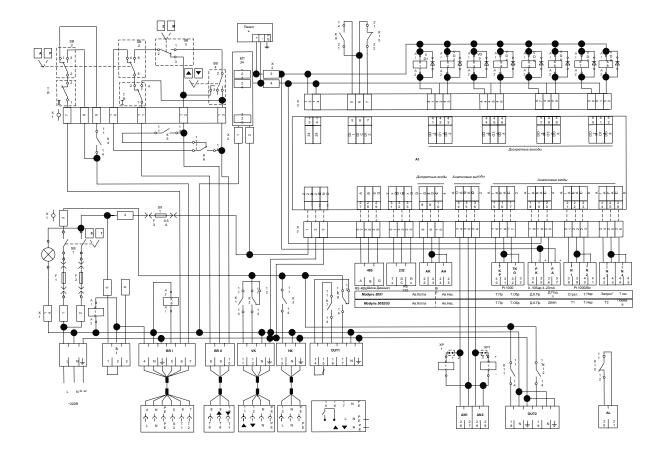
Нахождение	Тэг	Список	Тип	Статус	Примечание
	12DI15		Bool	Event	Данные с дискретного входа DI15
	12DI16		Bool	Event	Данные с дискретного входа DI16
	12DI17	DIA	Bool	Event	Данные с дискретного входа DI17
	12DI18	IO	Bool	Event	Данные с дискретного входа DI18
	12DI19		Bool	Event	Данные с дискретного входа DI19
ЭМ50.12	12DI20		Bool	Event	Данные с дискретного входа DI20
	Arh	Arh	Bool	Stat	Вкл/Выкл Архивирования
	Lim		Float	Stat	Скважность
	Т	Ā	Float	Stat	Период опроса
	Wr		INT	Data	Кол-во записей

ВНИМАНИЕ!!!

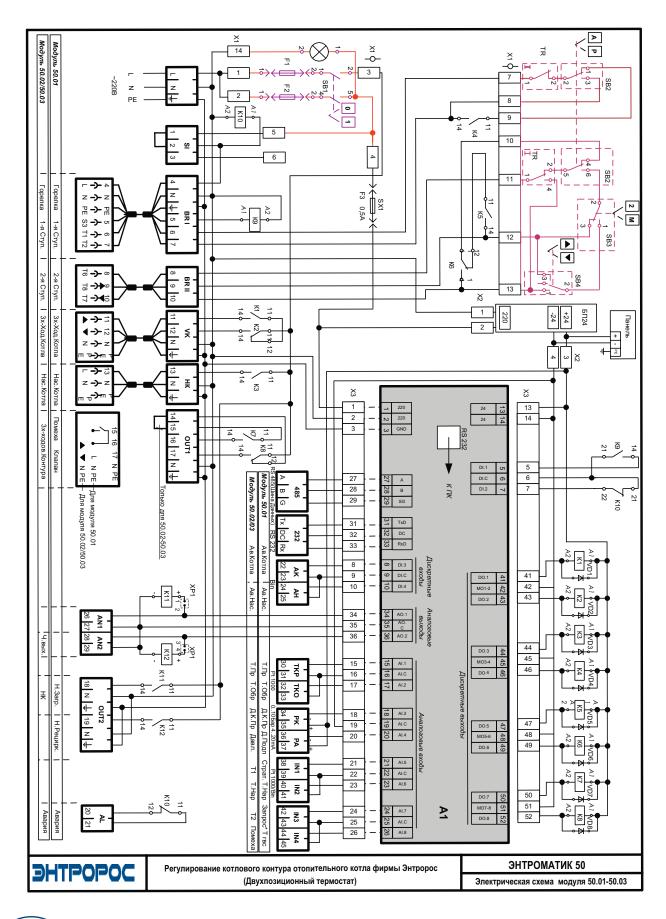
Не прописанные в таблице тэги или тэги имеющие статус "Системная переменная" запрещены для применения в системе диспетчеризации, а равно для удаленного редактирования. Изменения данных тэгов может повлечь за собой выход из строя всего комплекса автоматики.

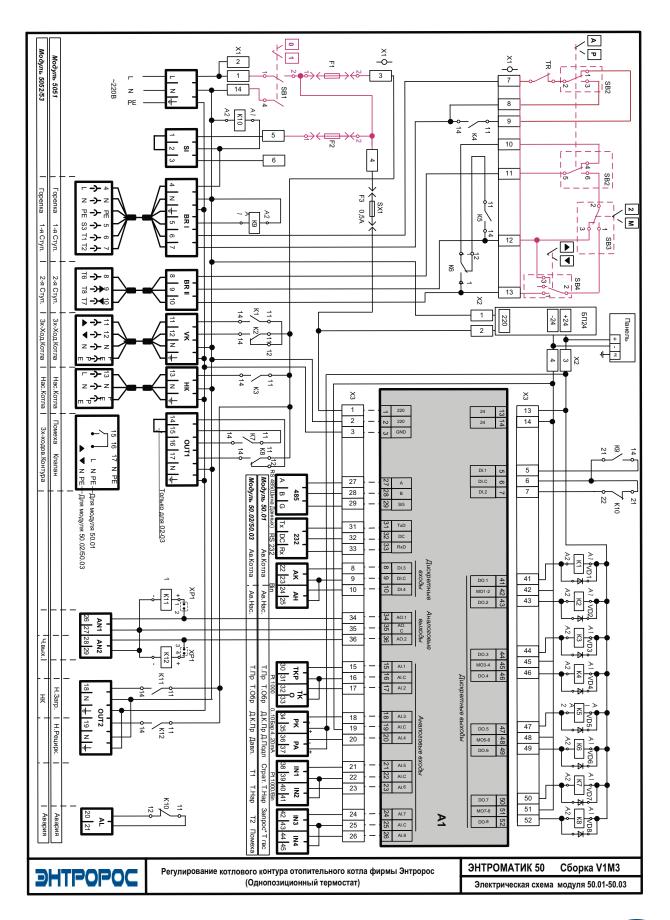
Статусы

Data – Данный статус сигнала указывает на его принадлежность к группе сигналов "Только для чтения" и является информативным

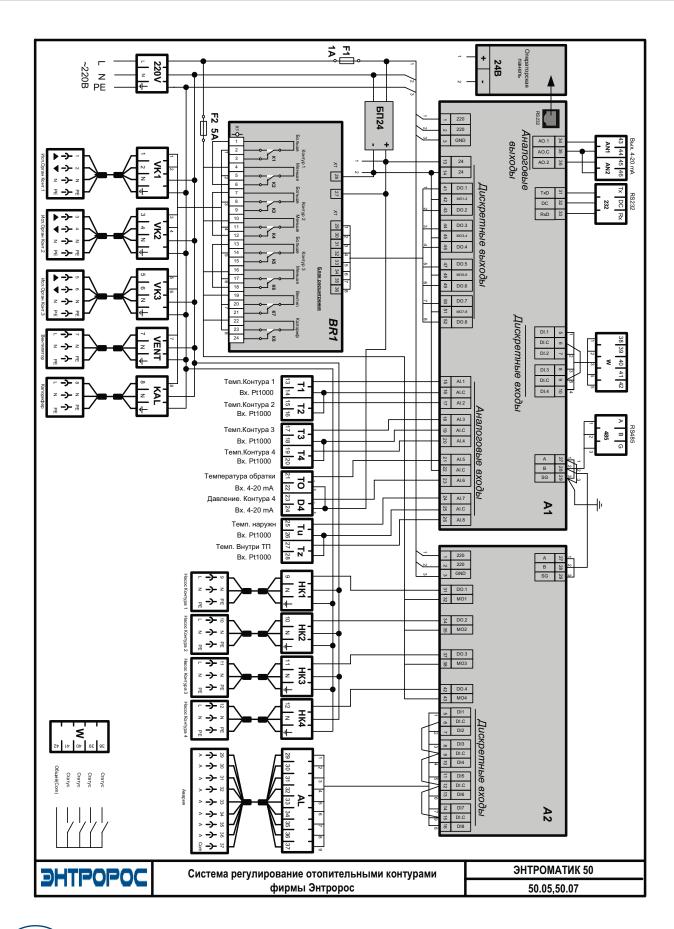

Stat – Данный статус указывает на то что тэг является уставкой с возможностью изменения

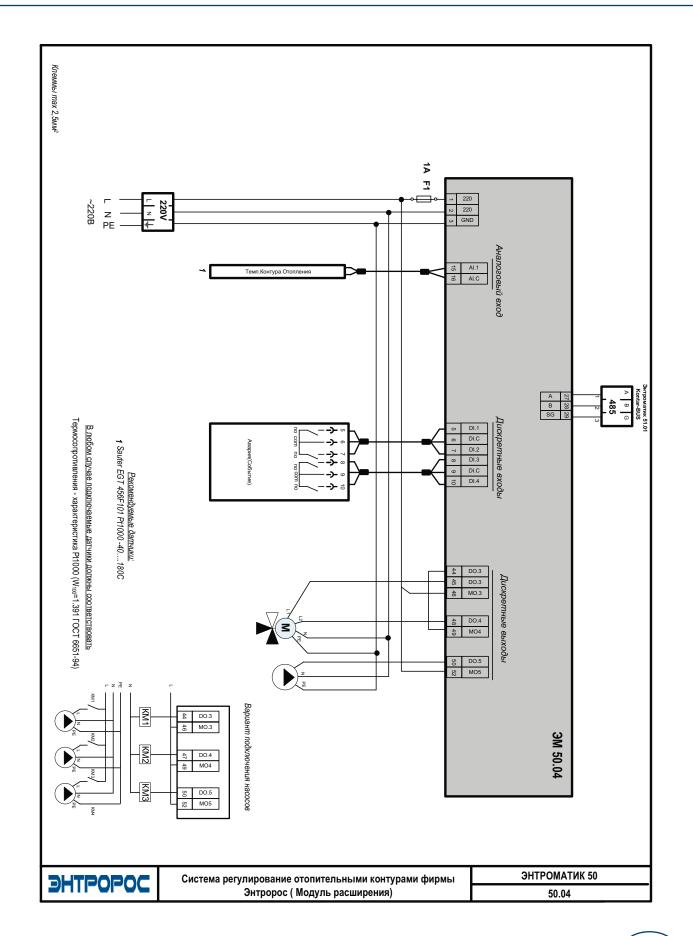
Event – данный сигнал отражает состояние дискретных входов и несет в себе информативный характер

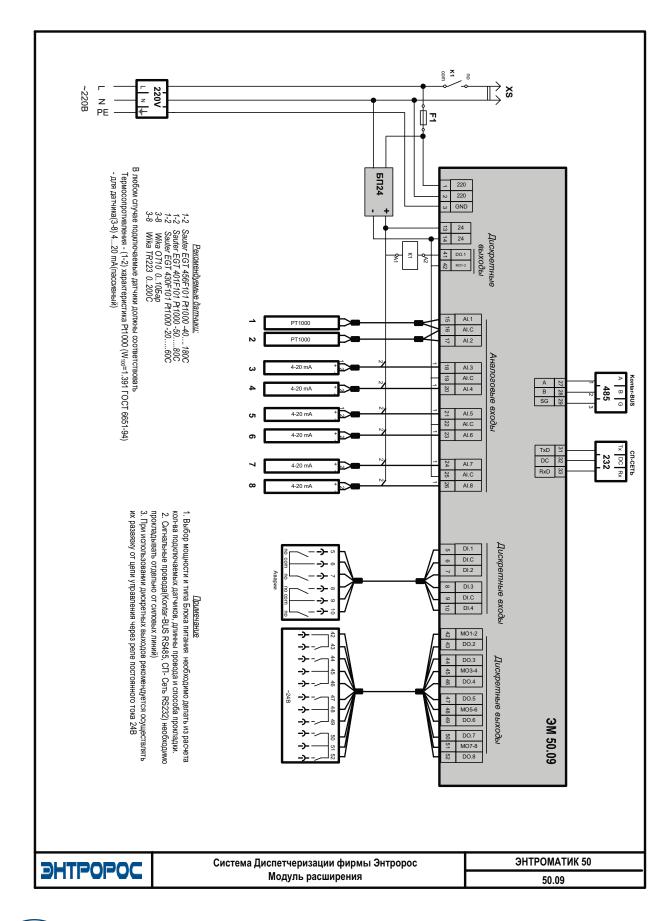

Alarm – данный сигнал является аварийным и имеет приоритет для диспетчеризации при передачи данных. При использовании СКАДа системы APM данный тэг будет включен в список Аварий, при интеграции с другими СКАДа системами через OPC сервер данный тэг будет иметь префикс Alarm.

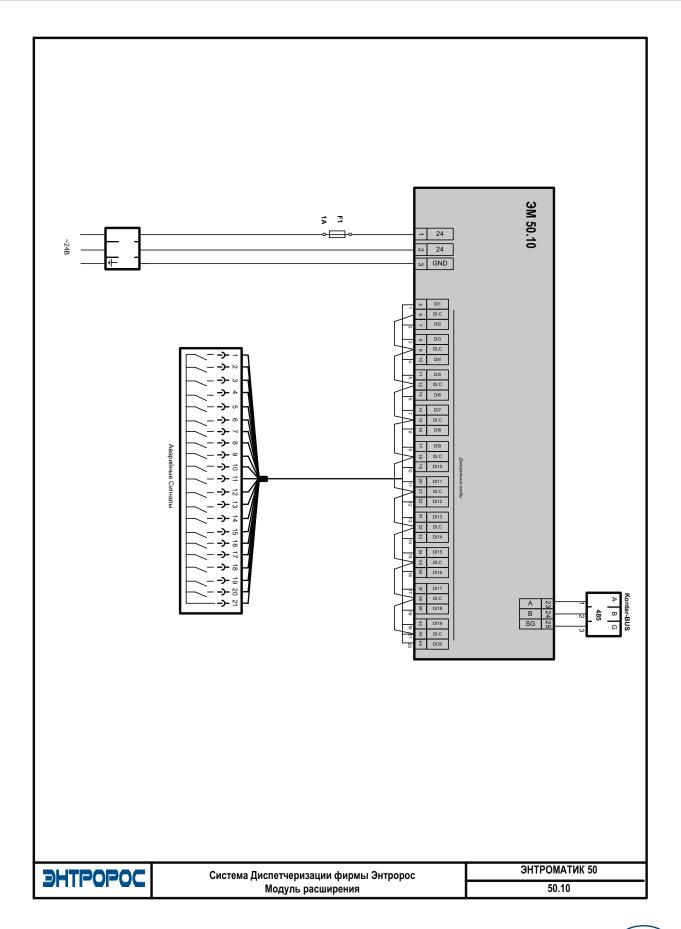

ПРИЛОЖЕНИЕ

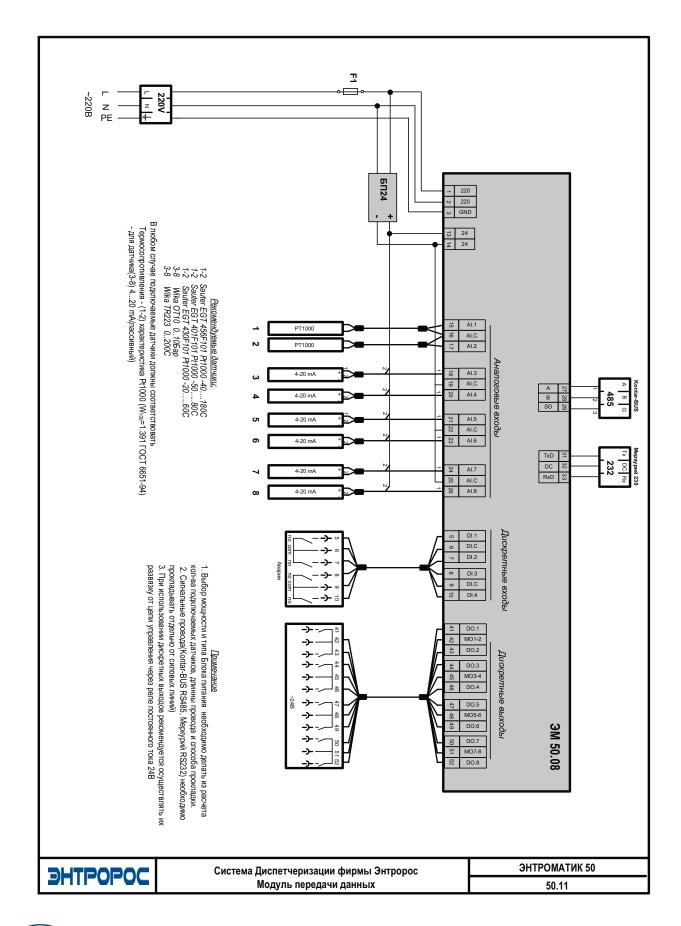
Схемы электрические принципиальные, способы подключения системы управления и диспетчеризации

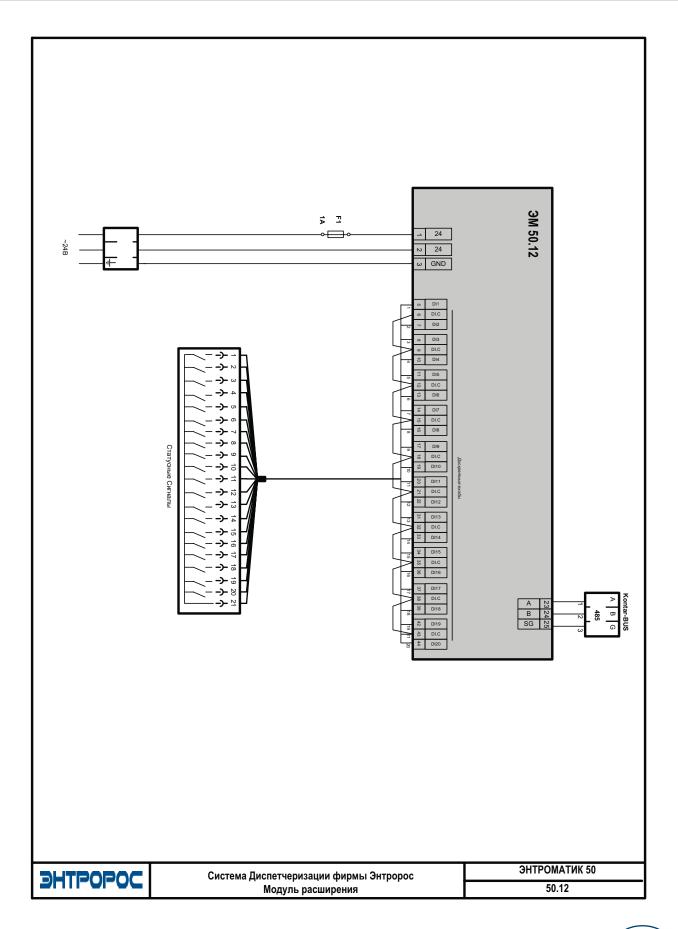


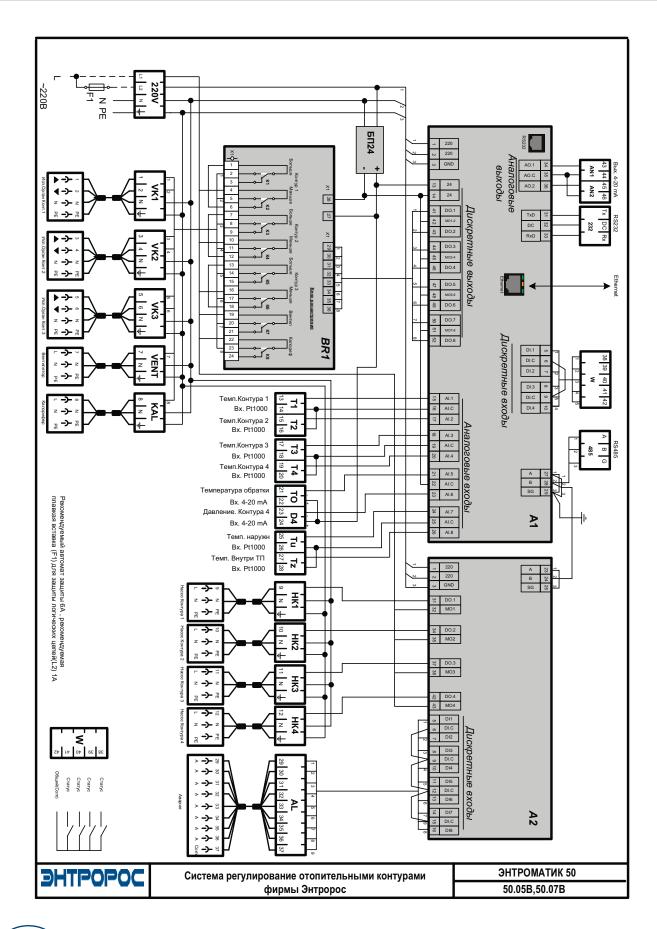

3HTPOPOC

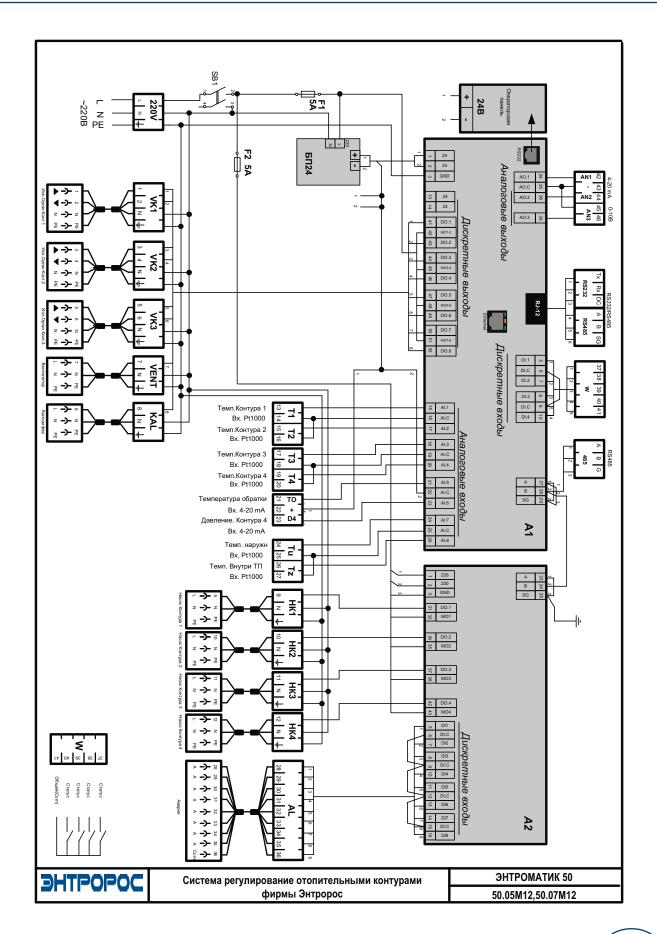



DHTPOPOC

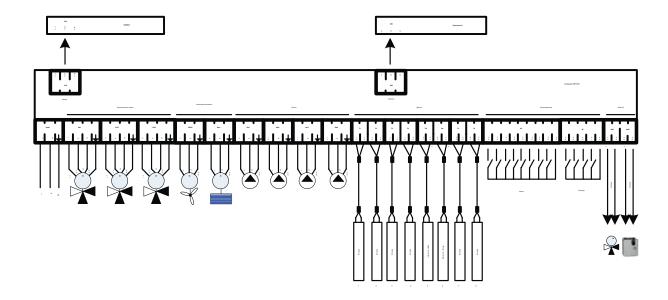


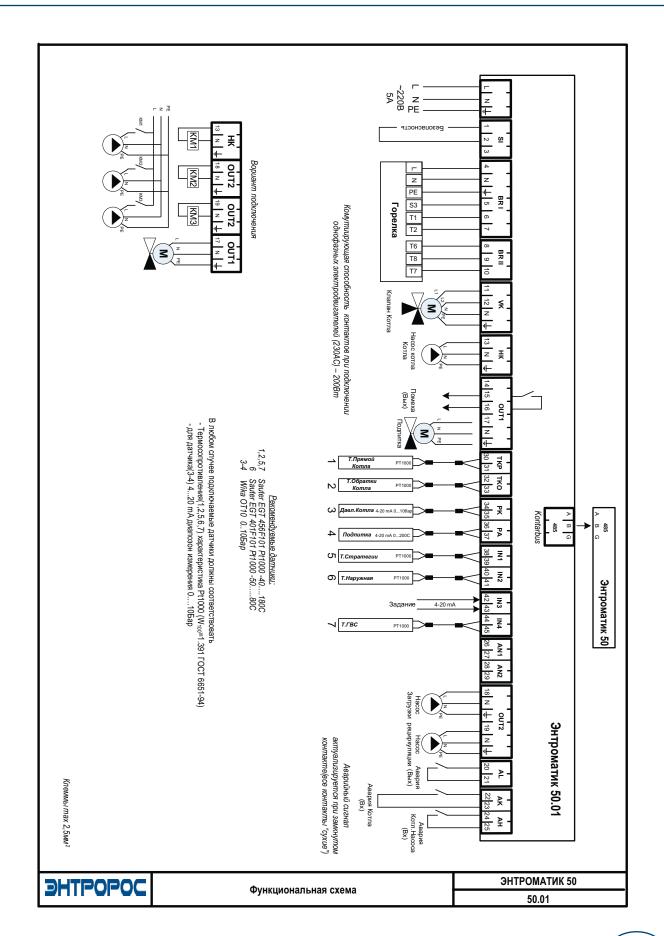

DHTPOPOC

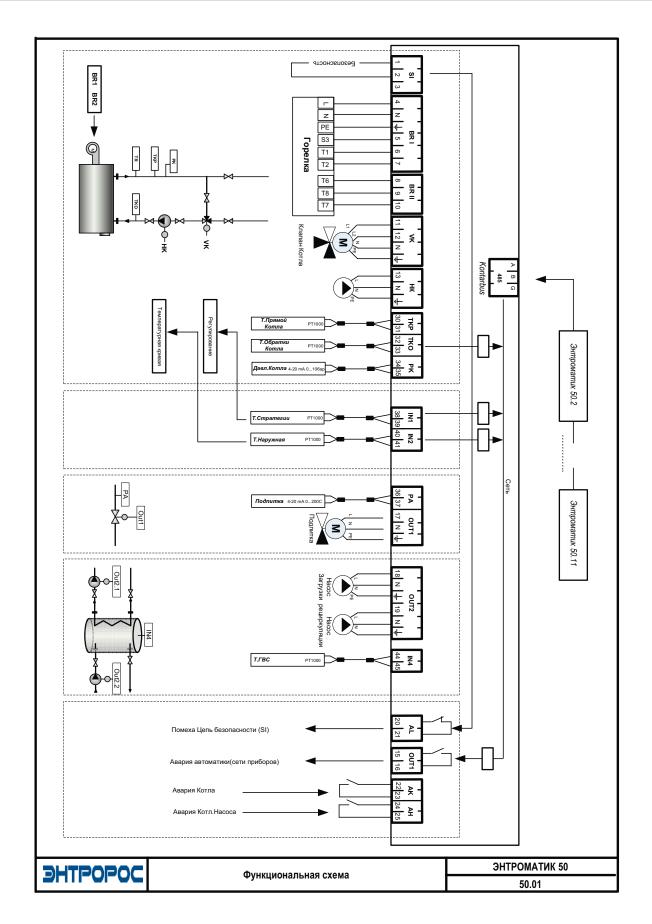


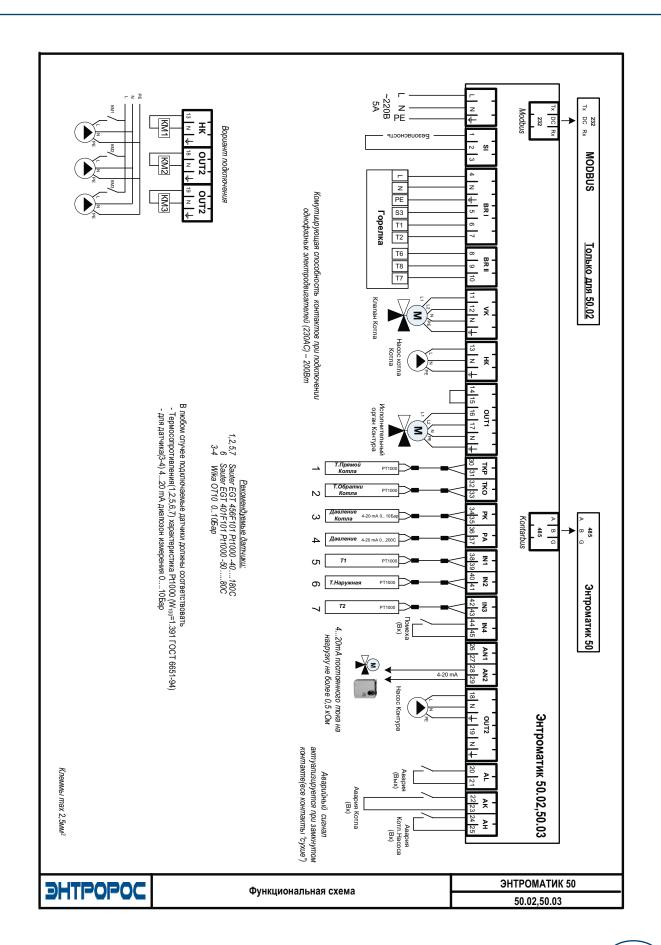

SHTPOPOC

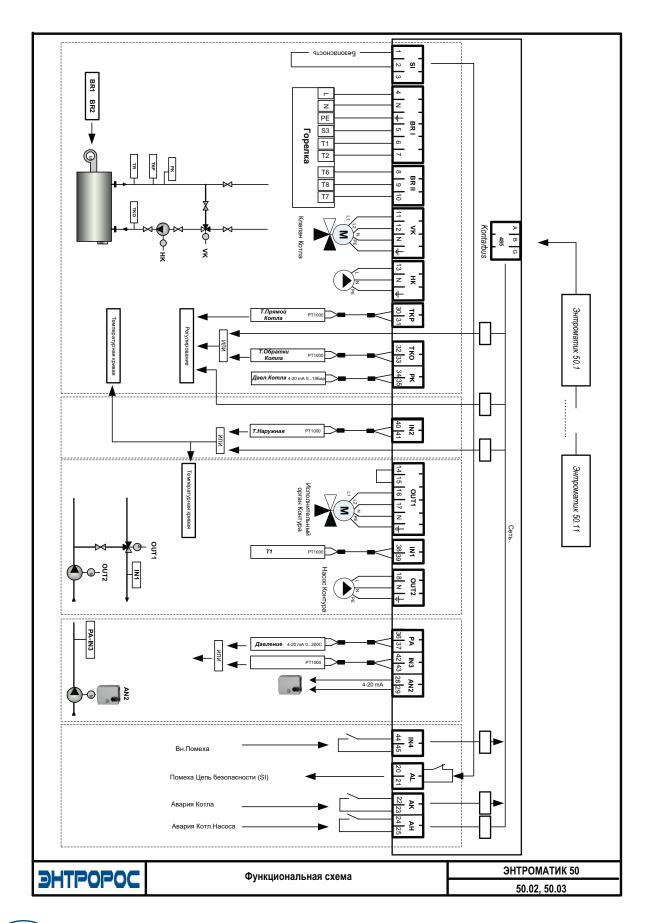
SHTPOPOC

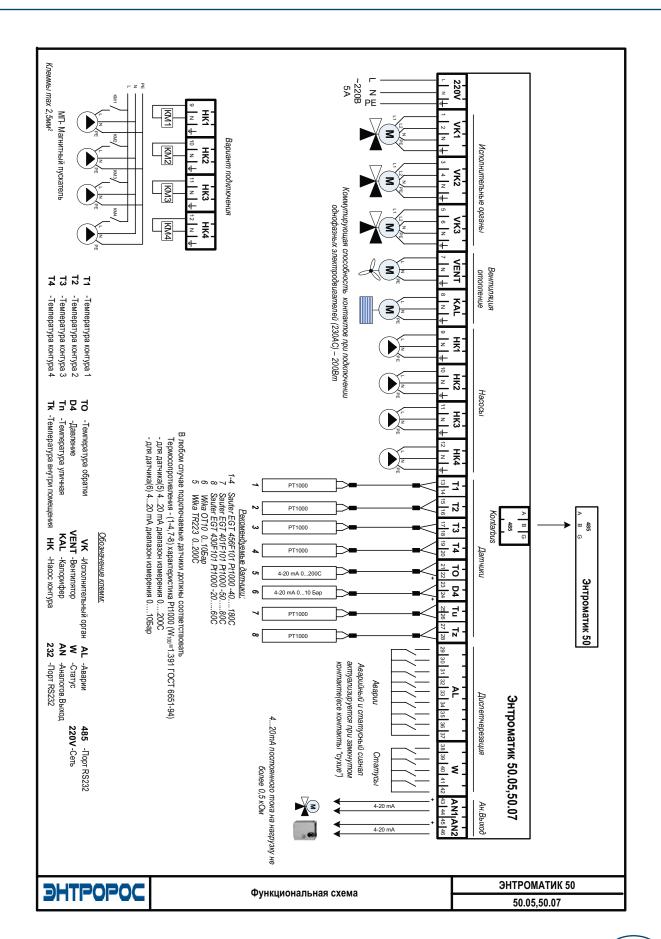


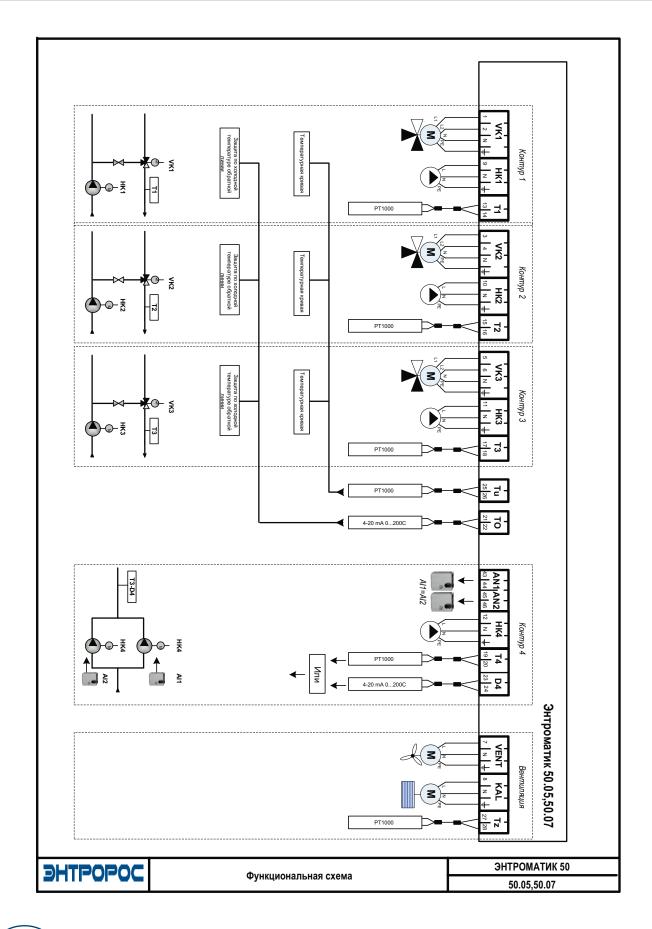



ПРИЛОЖЕНИЕ


Схемы электрические принципиальные, способы подключения системы управления и диспетчеризации




DHTPOPOC



3HTPOPOC

3HTPOPOC

ДЛЯ ЗАМЕТОК

ДЛЯ ЗАМЕТОК

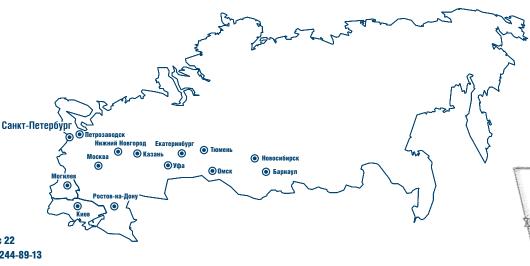
000 «ЗНТРОРОС» 196084, г. Санкт-Петербург, ул. Рощинская, д. 5 тел./факс: +7 (812) 644-03-03, +7 (812) 644-03-04 e-mail: info@entroros.ru

ЧТУП «ЗНТРОБЕЛ»
212030, г. Могилев,
ул. Дзержинского 11 А
тел.: +375 222 257153, факс: +375 222 259075
e-mail: office@entrobel.com

Филиал «ЗНТРОРОС-Петрозаводск»
185005, г. Петрозаводск,
ул. Ригачина, д. 64 А, офис 23
тел./факс: +7 (8142) 59-22-14
e-mail: info.petrozavodsk@entroros.ru

филиал «ЗНТРОРОС-ОМСК»
644010, г. ОМСК,
ул. Маяковского, д. 81, лит. А, оф.213
тел./факс: +7 (3812) 36-15-24
E-mail: info.omsk@entroros.ru

Филиал «ЗНТРОРОС-Уфа» 450098, г. Уфа, ул. Российская, д. 92/1, литера А, офис 22 тел.: +7 (347) 244-88-47, факс: +7 (347) 244-89-13 e-mail: info.ufa@entroros.ru


Филиал «ЗНТРОРОС-Екатеринбург» 620072, г. Екатеринбург, ул. Бетонщиков, д. 5 тел./факс: +7 (343) 253-72-73 e-mail: info.ekaterinburg@entroros.ru

Филиал «ЗНТРОРОС-Тюмень» 625000, г. Тюмень ул. Дзержинского, д. 15, офис 601/4 тел.: +7 (3452) 59-50-57 факс: +7 (3452) 59-50-58 e-mail: info.tumen@entroros.ru

Филиал «ЭНТРОРОС-Москва»
123007, г. Москва,
ул. 4-я Магистральная, д. 5, стр. 1
тел.: +7 (495) 981-33-57
e-mail: info.moskwa@entroros.ru

Филиал «ЗНТРОРОС-Ростов-на-Дону» 344065, г. Ростов-на-Дону, ул. 50-летия Ростсельмаша, д. 1/52, литер ЗА тел.: +7 (863) 203-74-06, факс: +7 (863) 203-74-07 e-mail: info.rostov-na-donu@entroros.ru 000 «ЗНТРОПИЕ» 02002, г. Киев, ул. Марины Расковой, 21, офис 605 тел. +38 044 3623472 e-mail: entropie@entroros.com

Филиал «ЗНТРОРОС-Казань» 420138, г. Казань, пр. Победы, д. 18-Б, офис 215 тел./факс: +7 (843) 228-99-13 e-mail: info.kazan@entroros.ru

Филиал «ЗНТРОРОС-Барнаул» 656056, г. Барнаул, ул. Мало-Тобольская, д. 18а, офис 211 тел./факс: +7 (3852) 66-86-82 e-mail: info.barnaul@entroros.ru

Филиал «ЗНТРОРОС-Новосибирск» 630108, г. Новосибирск, ул. Станционная, д. 30-А, офис 818 тел.: +7 (383) 210-54-40 факс: +7 (383) 210-54-41 e-mail: info.novosibirsk@entroros.ru

Филиал «ЗНТРОРОС-Нижний Новгород» 603152, г. Нижний Новгород, ул. Кащенко, д. 2, литер Б, офис 307 тел./факс: +7 (831) 220-14-48, +7 (831) 419-14-48 e-mail: info.nn@entroros.ru

ENTROPIE Heizungssysteme GmbH Helene-Mayer-Ring 31 80809 Münich, Germany tel.: +49 (89) 55969 983 fax: +49 (89) 55969 725 e-mail: info@entropie-hs.com

